Water resources engineering - application of hydrological and hydraulic principles to the planning, development, and management of water resources for beneficial human use. It involves assessing water availability, quality, and demand; designing and operating water infrastructure; and implementing strategies for sustainable water management.[2]
Hydrology has been subject to investigation and engineering for millennia.Ancient Egyptians were one of the first to employ hydrology in their engineering and agriculture, inventing a form of water management known as basin irrigation.[3]Mesopotamian towns were protected from flooding with high earthen walls.Aqueducts were built by theGreeks andRomans, whilehistory shows that the Chinese built irrigation and flood control works. The ancientSinhalese used hydrology to build complex irrigation works inSri Lanka, also known for the invention of theValve Pit which allowed construction of large reservoirs,anicuts and canals which still function.
Marcus Vitruvius, in the first century BC, described a philosophical theory of the hydrologic cycle, in which precipitation falling in the mountains infiltrated the Earth's surface and led to streams and springs in the lowlands.[4] With the adoption of a more scientific approach,Leonardo da Vinci andBernard Palissy independently reached an accurate representation of the hydrologic cycle. It was not until the 17th century that hydrologic variables began to be quantified.
Pioneers of the modern science of hydrology includePierre Perrault,Edme Mariotte andEdmund Halley. By measuring rainfall, runoff, and drainage area, Perrault showed that rainfall was sufficient to account for the flow of the Seine. Mariotte combined velocity and river cross-section measurements to obtain a discharge value, again in the Seine. Halley showed that the evaporation from theMediterranean Sea was sufficient to account for the outflow of rivers flowing into the sea.[5]
Rational analyses began to replace empiricism in the 20th century, while governmental agencies began their own hydrological research programs. Of particular importance were Leroy Sherman'sunit hydrograph, the infiltration theory ofRobert E. Horton, and C.V. Theis' aquifer test/equation describing well hydraulics.
Since the 1950s, hydrology has been approached with a more theoretical basis than in the past, facilitated by advances in the physical understanding of hydrological processes and by the advent of computers and especiallygeographic information systems (GIS). (See alsoGIS and hydrology)
The central theme of hydrology is that water circulates throughout theEarth through different pathways and at different rates. The most vivid image of this is in the evaporation of water from the ocean, which forms clouds. These clouds drift over the land and produce rain. The rainwater flows into lakes, rivers, or aquifers. The water in lakes, rivers, and aquifers then either evaporates back to the atmosphere or eventually flows back to the ocean, completing a cycle. Water changes its state of being several times throughout this cycle.
The areas of research within hydrology concern the movement of water between its various states, or within a given state, or simply quantifying the amounts in these states in a given region. Parts of hydrology concern developing methods for directly measuring these flows or amounts of water, while others concern modeling these processes either for scientific knowledge or for making a prediction in practical applications.
Ground water is water beneath Earth's surface, often pumped for drinking water.[1] Groundwater hydrology (hydrogeology) considers quantifying groundwater flow and solute transport.[6] Problems in describing the saturated zone include the characterization of aquifers in terms of flow direction, groundwater pressure and, by inference, groundwater depth (see:aquifer test). Measurements here can be made using apiezometer. Aquifers are also described in terms of hydraulic conductivity, storativity and transmissivity. There are a number of geophysical methods[7] for characterizing aquifers. There are also problems in characterizing the vadose zone (unsaturated zone).[8]
Infiltration is the process by which water enters the soil. Some of the water is absorbed, and the restpercolates down to thewater table. The infiltration capacity, the maximum rate at which the soil can absorb water, depends on several factors. The layer that is already saturated provides a resistance that is proportional to its thickness, while that plus the depth of water above the soil provides the driving force (hydraulic head). Dry soil can allow rapid infiltration bycapillary action; this force diminishes as the soil becomes wet.Compaction reduces the porosity and the pore sizes. Surface cover increases capacity by retarding runoff, reducing compaction and other processes. Higher temperatures reduceviscosity, increasing infiltration.[9]: 250–275
Hydrology considers quantifying surface water flow and solute transport, although the treatment of flows in large rivers is sometimes considered as a distinct topic of hydraulics or hydrodynamics. Surface water flow can include flow both in recognizable river channels and otherwise. Methods for measuring flow once the water has reached a river include thestream gauge (see:discharge), and tracer techniques. Other topics include chemical transport as part of surface water, sediment transport and erosion.
One of the important areas of hydrology is the interchange between rivers and aquifers. Groundwater/surface water interactions in streams and aquifers can be complex and the direction of net water flux (into surface water or into the aquifer) may vary spatially along a stream channel and over time at any particular location, depending on the relationship between stream stage and groundwater levels.
In some considerations, hydrology is thought of as starting at the land-atmosphere boundary[11] and so it is important to have adequate knowledge of both precipitation and evaporation. Precipitation can be measured in various ways:disdrometer for precipitation characteristics at a fine time scale;radar for cloud properties, rain rate estimation, hail and snow detection;rain gauge for routine accurate measurements of rain and snowfall;satellite for rainy area identification, rain rate estimation, land-cover/land-use, and soil moisture, snow cover or snow water equivalent for example.[12]
Evaporation is an important part of the water cycle. It is partly affected by humidity, which can be measured by asling psychrometer. It is also affected by the presence of snow, hail, and ice and can relate to dew, mist and fog. Hydrology considers evaporation of various forms: from water surfaces; as transpirationfrom plant surfaces in natural and agronomic ecosystems. Direct measurement of evaporation can be obtained using Simon'sevaporation pan.
Detailed studies of evaporation involve boundary layer considerations as well as momentum, heat flux, and energy budgets.
Estimates of changes in water storage around theTigris andEuphrates Rivers, measured by NASA'sGRACE satellites. The satellites measure tiny changes in gravitational acceleration, which can then be processed to reveal movement of water due to changes in its total mass.
Remote sensing of hydrologic processes can provide information on locations wherein situ sensors may be unavailable or sparse. It also enables observations over large spatial extents. Many of the variables constituting the terrestrial water balance, for examplesurface water storage,soil moisture,precipitation,evapotranspiration, andsnow andice, are measurable using remote sensing at various spatial-temporal resolutions and accuracies.[13] Sources of remote sensing include land-based sensors, airborne sensors andsatellite sensors which can capturemicrowave,thermal and near-infrared data or uselidar, for example.
In hydrology, studies of water quality concern organic and inorganic compounds, and both dissolved and sediment material. In addition, water quality is affected by the interaction of dissolved oxygen with organic material and various chemical transformations that may take place. Measurements of water quality may involve either in-situ methods, in which analyses take place on-site, often automatically, and laboratory-based analyses and may includemicrobiological analysis.
Observations of hydrologic processes are used to makepredictions of the future behavior of hydrologic systems (water flow, water quality).[14] One of the major current concerns in hydrologic research is "Prediction in Ungauged Basins" (PUB), i.e. in basins where no or only very few data exist.[15]
The aims of Statistical hydrology is to provide appropriate statistical methods for analyzing and modeling various parts of the hydrological cycle.[16] By analyzing the statistical properties of hydrologic records, such as rainfall or river flow, hydrologists can estimate future hydrologic phenomena. When making assessments of how often relatively rare events will occur, analyses are made in terms of thereturn period of such events. Other quantities of interest include the average flow in a river, in a year or by season.
These estimates are important forengineers and economists so that properrisk analysis can be performed to influence investment decisions in future infrastructure and to determine the yield reliability characteristics of water supply systems. Statistical information is utilized to formulate operating rules for large dams forming part of systems which include agricultural, industrial andresidential demands.
Hydrological models are simplified, conceptual representations of a part of the hydrologic cycle. They are primarily used for hydrological prediction and for understanding hydrological processes, within the general field ofscientific modeling. Two major types of hydrological models can be distinguished:[17]
Models based on data. These models areblack box systems, using mathematical and statistical concepts to link a certain input (for instance rainfall) to the model output (for instancerunoff). Commonly used techniques areregression,transfer functions, andsystem identification. The simplest of these models may be linear models, but it is common to deploy non-linear components to represent some general aspects of a catchment's response without going deeply into the real physical processes involved. An example of such an aspect is the well-known behavior that a catchment will respond much more quickly and strongly when it is already wet than when it is dry.
Models based on process descriptions. These models try to represent the physical processes observed in the real world. Typically, such models contain representations ofsurface runoff,subsurface flow,evapotranspiration, andchannel flow, but they can be far more complicated. Within this category, models can be divided into conceptual and deterministic. Conceptual models link simplified representations of the hydrological processes in an area, whereas deterministic models seek to resolve as much of the physics of a system as possible. These models can be subdivided into single-event models and continuous simulation models.
Recent research in hydrological modeling tries to have a more global approach to the understanding of thebehavior of hydrologic systems to make better predictions and to face the major challenges in water resources management.
Water movement is a significant means by which other materials, such as soil, gravel, boulders or pollutants, are transported from place to place. Initial input to receiving waters may arise from apoint source discharge or aline source orarea source, such assurface runoff. Since the 1960s rather complexmathematical models have been developed, facilitated by the availability of high-speed computers. The most common pollutant classes analyzed arenutrients,pesticides,total dissolved solids andsediment.
Connected Waters Initiative, University of New South Wales[49] – Investigating and raising awareness of groundwater and water resource issues in Australia
Oceanography is the more general study of water in the oceans and estuaries.
Meteorology is the more general study of the atmosphere and of weather, including precipitation as snow and rainfall.
Limnology is the study of lakes, rivers and wetlands ecosystems. It covers the biological, chemical, physical, geological, and other attributes of all inland waters (running and standing waters, both fresh and saline, natural or man-made).[51]
Water resources are sources of water that are useful or potentially useful. Hydrology studies the availability of those resources, but usually not their uses.
^Postel, Sandra (1999)."Egypt's Nile Valley Basin Irrigation"(PDF).waterhistory.com. Excerpted fromPillar of Sand: Can the Irrigation Miracle Last?. W.W. Norton.
^Graf, T.; Simmons, C. T. (February 2009). "Variable-density groundwater flow and solute transport in fractured rock: Applicability of the Tang et al. [1981] analytical solution".Water Resources Research.45 (2): W02425.Bibcode:2009WRR....45.2425G.doi:10.1029/2008WR007278.S2CID133884299.
^Vereecken, H.; Kemna, A.; Münch, H. M.; Tillmann, A.; Verweerd, A. (2006). "Aquifer Characterization by Geophysical Methods".Encyclopedia of Hydrological Sciences. John Wiley & Sons.doi:10.1002/0470848944.hsa154b.ISBN0-471-49103-9.
^Wilson, L. Gray; Everett, Lorne G.; Cullen, Stephen J. (1994).Handbook of Vadose Zone Characterization & Monitoring. CRC Press.ISBN978-0-87371-610-9.
^Reddy, P. Jaya Rami (2007).A Textbook of Hydrology (Reprint. ed.). New Delhi: Laxmi Publ.ISBN9788170080992.
^Robinson, D. A., C. S. Campbell, J. W. Hopmans, B. K. Hornbuckle, S. B. Jones, R. Knight, F. L. Ogden, J. Selker, and O. Wendroth. (2008) "Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review."
^"Eawag aquatic research". Swiss Federal Institute of Aquatic Science and Technology. 25 January 2012.Archived from the original on 25 June 2015. Retrieved8 March 2013.
Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 1: Fundamentals and Applications, Francis and Taylor, CRC Group, 636 Pages, USA.
Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 2: Modeling, Climate Change and Variability, Francis and Taylor, CRC Group, 646 Pages, USA.
Eslamian, S, 2014, (ed.) Handbook of Engineering Hydrology, Vol. 3: Environmental Hydrology and Water Management, Francis and Taylor, CRC Group, 606 Pages, USA.
Hendriks, Martin R. (2010).Introduction to physical hydrology. Oxford: Oxford University Press.ISBN978-0-19-929684-2.
Hornberger, George M.;Wiberg, Patricia L.; Raffensperger, Jeffrey P.; D'Odorico, Paolo P. (2014).Elements of physical hydrology (2nd ed.). Baltimore, Md.: Johns Hopkins University Press.ISBN9781421413730.
Maidment, David R., ed. (1993).Handbook of hydrology. New York: McGraw-Hill.ISBN0-07-039732-5.
McCuen, Richard H. (2005).Hydrologic analysis and design (3rd ed.). Upper Saddle River, N.J.: Pearson-Prentice Hall.ISBN0-13-142424-6.
Viessman, Warren Jr.; Gary L. Lewis (2003).Introduction to hydrology (5th ed.). Upper Saddle River, N.J.: Pearson Education.ISBN0-673-99337-X.