Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hughes–Drever experiment

From Wikipedia, the free encyclopedia
7Li NMR spectrum of LiCl (1M) in D2O. The sharp, unsplit NMR line of this isotope of lithium is evidence for the isotropy of mass and space.

Hughes–Drever experiments (alsoclock comparison-,clock anisotropy-,mass isotropy-, orenergy isotropy experiments) arespectroscopic tests of theisotropy ofmass andspace. Although originally conceived of as a test ofMach's principle, they are now understood to be an important test ofLorentz invariance. As inMichelson–Morley experiments, the existence of apreferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of theequivalence principle. Thus these experiments concern fundamental aspects of bothspecial andgeneral relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, ofprotons,neutrons, andelectrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity (see alsoTests of special relativity).[1][2][3][4][5][6]

Experiments by Hughes and Drever

[edit]

Giuseppe Cocconi andEdwin Ernest Salpeter (1958) theorized thatinertia depends on the surrounding masses according toMach's principle. Nonuniform distribution of matter thus would lead toanisotropy of inertia in different directions. Heuristic arguments led them to believe that any inertial anisotropy, if one existed, would be dominated by mass contributions from the center of ourMilky Way galaxy. They argued that this anisotropy might be observed in two ways: measuring theZeeman splitting in an atom[7] or measuring the Zeeman splitting in theexcited nuclear state of57
Fe
using theMössbauer effect.[8]

Vernon W. Hugheset al. (1960)[9] andRonald Drever (1961)[10] independently conducted similarspectroscopic experiments to test Mach's principle. However, they didn't use the Mössbauer effect but mademagnetic resonance measurements of thenucleus oflithium-7, whoseground state possesses aspin of32. The ground state is split into four equally spaced magneticenergy levels when measured in a magnetic field in accordance with its allowedmagnetic quantum number. The nuclear wave functions for the different energy levels have different spatial distributions relative to the magnetic field, and thus have different directional properties. If mass isotropy is satisfied, each transition between a pair of adjacent levels should emit a photon of equal frequency, resulting in a single, sharp spectral line. On the other hand, if inertia has a directional dependence, a triplet or broadened resonance line should be observed. During the 24-hour course of Drever's version of the experiment, the Earth turned, and the magnetic field axis swept different sections of the sky. Drever paid particular attention to the behavior of the spectral line as the magnetic field crossed the center of the galaxy.[11] Neither Hughes nor Drever observed any frequency shift of the energy levels, and due to their experiments' high precision, the maximal anisotropy could be limited to 0.04 Hz = 10−25 GeV.

Regarding the consequences of the null result for Mach's principle, it was shown byRobert H. Dicke (1961) that it is in agreement with this principle, as long as the spatial anisotropy is the same for all particles. Thus the null result is rather showing that inertial anisotropy effects are, if they exist, universal for all particles and locally unobservable.[12][13]

Modern interpretation

[edit]

While the motivation for this experiment was to test Mach's principle, it has since become recognized as an important test ofLorentz invariance and thusspecial relativity. This is because anisotropy effects also occur in the presence of apreferred and Lorentz-violating frame of reference – usually identified with theCMBR rest frame as some sort ofluminiferous aether (relative velocity about 368 km/s). Therefore, the negative results of the Hughes–Drever experiments (as well as theMichelson–Morley experiments) rule out the existence of such a frame. In particular, Hughes–Drever tests of Lorentz violations are often described by a test theory of special relativity put forward byClifford Will. According to this model, Lorentz violations in the presence of preferred frames can lead to differences between the maximal attainable velocity of massive particles and the speed of light. If they were different, the properties and frequencies of matter interactions would change as well. In addition, it is a fundamental consequence of theequivalence principle ofgeneral relativity that Lorentz invariance locally holds in freely moving reference frames = local Lorentz invariance (LLI). This means that the results of this experiment concern both special and general relativity.[1][2]

Due to the fact that different frequencies ("clocks") are compared, these experiments are also denoted as clock-comparison experiments.[3][4]

Recent experiments

[edit]
Further information:Modern searches for Lorentz violation

Besides Lorentz violations due to a preferred frame or influences based on Mach's principle, spontaneous violations of Lorentz invariance andCPT symmetry are also being searched for, motivated by the predictions of variousquantum gravity models that suggest their existence. Modern updates of the Hughes–Drever experiments have been conducted studying possible Lorentz and CPT violation inneutrons andprotons. Usingspin-polarized systems and co-magnetometers (to suppress magnetic influences), the accuracy and sensitivity of these experiments have been greatly increased. In addition, by using spin-polarizedtorsion balances, theelectron sector has also been tested.[5][6]

All of these experiments have thus far given negative results, so there is still no sign of the existence of a preferred frame or any other form of Lorentz violation. The values of the following table are related to the coefficients given by theStandard-Model Extension (SME), an often usedeffective field theory to assess possible Lorentz violations (see also otherTest theories of special relativity). From that, any deviation of Lorentz invariance can be connected with specific coefficients. Since a series of coefficients are tested in those experiments, only the value of maximal sensitivity is given (for precise data, see the individual articles):[3][14][4]

AuthorYearSME constraintsDescription
ProtonNeutronElectron
Prestageet al.[15]198510−27Comparing the nuclearspin-flip transition of9
Be+
(stored in apenning trap) with a hydrogen maser transition.
Phillips[16]198710−27Sinusoidal oscillations were investigated using acryogenic spin-torsion pendulum carrying a transversely polarized magnet.
Lamoreauxet al.[17]198910−29They induced dipole and quadrupole spin polarization into avapor of201
Hg
, by which quadrupole energy shifts can be observed.
Chuppet al.[18]198910−27Time-dependent quadrupole splitting of Zeeman levels is investigated.21
Ne
and3
He
gases are polarized by spin exchange and compared.
Winelandet al.[19]199110−25The anomalous dipole-monopole and dipole-dipole couplings are investigated, by examining hyperfine resonances in9
Be+
.
Wanget al.[20]199310−27A spin-torsion pendulum carrying a spin-polarizedDyFe mass is investigated for sidereal variations.
Berglundet al.[21]199510−2710−3010−27The frequencies of199Hg and133Cs are compared by applying a magnetic field.
Bearet al.[22]200010−31The frequencies of129
Xe
and3
He
Zeeman masers are compared.
Phillipset al.[23]200010−27The Zeeman frequency is measured usinghydrogen masers.
Humphreyet al.[24]200310−2710−27Similar to Phillipset al. (2000).
Houet al.[14]200310−29Similar to Wanget al. (1993).
Canèet al.[25]200410−32Similar to Bearet al. (2000).
Wolfet al.[26]200610−25Atomic frequencies are measured using laser cooled133
Cs
atomic fountains.
Heckelet al.[27]200610−30They used a spin-torsion pendulum with four sections ofAlnico and four sections ofSm5Co.
Heckelet al.[28]200810−31Similar to Heckel et al. (2006).
Altarevet al.[29]200910−29The spin-precession frequencies in stored ultracold neutrons and199
Hg
are analyzed.
Brownet al.[30]201010−3210−33Comparing the frequencies in aK /3
He
comagnetometer.
Gemmelet al.[31]201010−32Comparing the frequencies in a129
Xe
/3
He
comagnetometer.
Smiciklaset al.[32]201110−29Comparing the frequencies in a21
Ne
/Rb /K comagnetometer. Test of the maximal attainable velocity of neutrons.
Pecket al.[33]201210−3010−31Similar to Berglundet al. (1995).
Hohenseeet al.[34]201310−17Measuring the transition frequencies of two nearly degenerate states of164
Dy
and162
Dy
. Test of the maximal attainable velocity of electrons.
Allmendingeret al.[35]201310−34Similar to Gemmelet al. (2010).

References

[edit]
  1. ^abWill, C. M. (2006)."The Confrontation between General Relativity and Experiment".Living Reviews in Relativity.9 (3): 3.arXiv:gr-qc/0510072.Bibcode:2006LRR.....9....3W.doi:10.12942/lrr-2006-3.PMC 5256066.PMID 28179873.
  2. ^abWill, C. M. (1995). "Stable clocks and general relativity".Proceedings of the 30th Rencontres de Moriond: 417.arXiv:gr-qc/9504017.Bibcode:1995dmcc.conf..417W.
  3. ^abcKostelecký, V. Alan; Lane, Charles D. (1999). "Constraints on Lorentz violation from clock-comparison experiments".Physical Review D.60 (11) 116010.arXiv:hep-ph/9908504.Bibcode:1999PhRvD..60k6010K.doi:10.1103/PhysRevD.60.116010.S2CID 119039071.
  4. ^abcMattingly, David (2005)."Modern Tests of Lorentz Invariance".Living Rev. Relativ.8 (5): 5.arXiv:gr-qc/0502097.Bibcode:2005LRR.....8....5M.doi:10.12942/lrr-2005-5.PMC 5253993.PMID 28163649.
  5. ^abPospelov, Maxim; Romalis, Michael (2004)."Lorentz Invariance on Trial"(PDF).Physics Today.57 (7):40–46.Bibcode:2004PhT....57g..40P.doi:10.1063/1.1784301. Archived fromthe original(PDF) on 2022-01-02. Retrieved2011-05-26.
  6. ^abWalsworth, R. L. (2006)."Tests of Lorentz Symmetry in the Spin-Coupling Sector"(PDF).Special Relativity. Lecture Notes in Physics. Vol. 702. pp. 493–505.doi:10.1007/3-540-34523-X_18.ISBN 978-3-540-34522-0.
  7. ^Cocconi, G.; Salpeter E. (1958). "A search for anisotropy of inertia".Il Nuovo Cimento.10 (4):646–651.Bibcode:1958NCim...10..646C.doi:10.1007/BF02859800.S2CID 123226805.
  8. ^Cocconi, G.; Salpeter E. (1960). "Upper Limit for the Anisotropy of Inertia from the Mössbauer Effect".Physical Review Letters.4 (4):176–177.Bibcode:1960PhRvL...4..176C.doi:10.1103/PhysRevLett.4.176.
  9. ^Hughes, V. W.; Robinson, H. G.; Beltran-Lopez, V. (1960). "Upper Limit for the Anisotropy of Inertial Mass from Nuclear Resonance Experiments".Physical Review Letters.4 (7):342–344.Bibcode:1960PhRvL...4..342H.doi:10.1103/PhysRevLett.4.342.
  10. ^Drever, R. W. P. (1961). "A search for anisotropy of inertial mass using a free precession technique".Philosophical Magazine.6 (65):683–687.Bibcode:1961PMag....6..683D.doi:10.1080/14786436108244418.
  11. ^Bartusiak, Marcia (2003).Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time. Joseph Henry Press. pp. 96–97.ISBN 0-425-18620-2. Retrieved15 Jul 2012.'I watched that line over a 24-hour period as the Earth rotated. As the axis of the field swung past the center of the galaxy and other directions, I looked for a change,' recalls Drever.
  12. ^Dicke, R. H. (1961). "Experimental Tests of Mach's Principle".Physical Review Letters.7 (9):359–360.Bibcode:1961PhRvL...7..359D.doi:10.1103/PhysRevLett.7.359.
  13. ^Dicke, R. H. (1964).The Theoretical Significance of Experimental Relativity. Gordon and Breach.
  14. ^abHou, Li-Shing; Ni, Wei-Tou; Li, Yu-Chu M. (2003). "Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance".Physical Review Letters.90 (20) 201101.arXiv:physics/0009012.Bibcode:2003PhRvL..90t1101H.doi:10.1103/PhysRevLett.90.201101.PMID 12785879.S2CID 28211115.
  15. ^Prestage, J. D.; Bollinger, J. J.; Itano, W. M.; Wineland, D. J. (1985). "Limits for spatial anisotropy by use of nuclear-spin-polarized Be-9(+) ions".Physical Review Letters.54 (22):2387–2390.Bibcode:1985PhRvL..54.2387P.doi:10.1103/PhysRevLett.54.2387.PMID 10031329.
  16. ^Phillips, P. R. (1987). "Test of spatial isotropy using a cryogenic spin-torsion pendulum".Physical Review Letters.59 (5):1784–1787.Bibcode:1987PhRvL..59.1784P.doi:10.1103/PhysRevLett.59.1784.PMID 10035328.
  17. ^Lamoreaux, S. K.; Jacobs, J. P.; Heckel, B. R.; Raab, F. J.; Fortson, E. N. (1989). "Optical pumping technique for measuring small nuclear quadrupole shifts in 1S(0) atoms and testing spatial isotropy".Physical Review A.39 (3):1082–1111.Bibcode:1989PhRvA..39.1082L.doi:10.1103/PhysRevA.39.1082.PMID 9901347.
  18. ^Chupp, T. E.; Hoare, R. J.; Loveman, R. A.; Oteiza, E. R.; Richardson, J. M.; Wagshul, M. E.; Thompson, A. K. (1989). "Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne".Physical Review Letters.63 (15):1541–1545.Bibcode:1989PhRvL..63.1541C.doi:10.1103/PhysRevLett.63.1541.PMID 10040606.
  19. ^Wineland, D. J.; Bollinger, J. J.; Heinzen, D. J.; Itano, W. M.; Raizen, M. G. (1991). "Search for anomalous spin-dependent forces using stored-ion spectroscopy".Physical Review Letters.67 (13):1735–1738.Bibcode:1991PhRvL..67.1735W.doi:10.1103/PhysRevLett.67.1735.PMID 10044234.
  20. ^Wang, Shih-Liang; Ni, Wei-Tou; Pan, Sheau-Shi (1993). "New Experimental Limit on the Spatial Anisotropy for Polarized Electrons".Modern Physics Letters A.8 (39):3715–3725.Bibcode:1993MPLA....8.3715W.doi:10.1142/S0217732393003445.
  21. ^Berglund, C. J.; Hunter, L. R.; Krause, D. Jr.; Prigge, E. O.; Ronfeldt, M. S.; Lamoreaux, S. K. (1995). "New Limits on Local Lorentz Invariance from Hg and Cs Magnetometers".Physical Review Letters.75 (10):1879–1882.Bibcode:1995PhRvL..75.1879B.doi:10.1103/PhysRevLett.75.1879.PMID 10059152.
  22. ^Bear, D.; Stoner, R. E.; Walsworth, R. L.; Kostelecký, V. Alan; Lane, Charles D. (2000). "Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gas Maser".Physical Review Letters.85 (24):5038–5041.arXiv:physics/0007049.Bibcode:2000PhRvL..85.5038B.doi:10.1103/PhysRevLett.85.5038.PMID 11102181.S2CID 41363493.
  23. ^Phillips, D. F.; Humphrey, M. A.; Mattison, E. M.; Stoner, R. E.; Vessot, R. F.; Walsworth, R. L. (2001). "Limit on Lorentz and CPT violation of the proton using a hydrogen maser".Physical Review D.63 (11) 111101.arXiv:physics/0008230.Bibcode:2001PhRvD..63k1101P.doi:10.1103/PhysRevD.63.111101.S2CID 10665017.
  24. ^Humphrey, M. A.; Phillips, D. F.; Mattison, E. M.; Vessot, R. F.; Stoner, R. E.; Walsworth, R. L. (2003). "Testing CPT and Lorentz symmetry with hydrogen masers".Physical Review A.68 (6) 063807.arXiv:physics/0103068.Bibcode:2003PhRvA..68f3807H.doi:10.1103/PhysRevA.68.063807.S2CID 13659676.
  25. ^Canè, F.; Bear, D.; Phillips, D. F.; Rosen, M. S.; Smallwood, C. L.; Stoner, R. E.; Walsworth, R. L.; Kostelecký, V. Alan (2004). "Bound on Lorentz and CPT Violating Boost Effects for the Neutron".Physical Review Letters.93 (23) 230801.arXiv:physics/0309070.Bibcode:2004PhRvL..93w0801C.doi:10.1103/PhysRevLett.93.230801.PMID 15601138.S2CID 20974775.
  26. ^Wolf, P.; Chapelet, F.; Bize, S.; Clairon, A. (2006). "Cold Atom Clock Test of Lorentz Invariance in the Matter Sector".Physical Review Letters.96 (6) 060801.arXiv:hep-ph/0601024.Bibcode:2006PhRvL..96f0801W.doi:10.1103/PhysRevLett.96.060801.PMID 16605978.S2CID 141060.
  27. ^Heckel, B. R.; Cramer, C. E.; Cook, T. S.; Adelberger, E. G.; Schlamminger, S.; Schmidt, U. (2006). "New CP-Violation and Preferred-Frame Tests with Polarized Electrons".Physical Review Letters.97 (2) 021603.arXiv:hep-ph/0606218.Bibcode:2006PhRvL..97b1603H.doi:10.1103/PhysRevLett.97.021603.PMID 16907432.S2CID 27027816.
  28. ^Heckel, B. R.; Adelberger, E. G.; Cramer, C. E.; Cook, T. S.; Schlamminger, S.; Schmidt, U. (2008). "Preferred-frame and CP-violation tests with polarized electrons".Physical Review D.78 (9) 092006.arXiv:0808.2673.Bibcode:2008PhRvD..78i2006H.doi:10.1103/PhysRevD.78.092006.S2CID 119259958.
  29. ^Altarev, I.; et al. (2009). "Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons".Physical Review Letters.103 (8) 081602.arXiv:0905.3221.Bibcode:2009PhRvL.103h1602A.doi:10.1103/PhysRevLett.103.081602.PMID 19792714.S2CID 5224718.
  30. ^Brown, J. M.; Smullin, S. J.; Kornack, T. W.; Romalis, M. V. (2010). "New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions".Physical Review Letters.105 (15) 151604.arXiv:1006.5425.Bibcode:2010PhRvL.105o1604B.doi:10.1103/PhysRevLett.105.151604.PMID 21230893.S2CID 4187692.
  31. ^Gemmel, C.; Heil, W.; Karpuk, S.; Lenz, K.; Sobolev, Yu.; Tullney, K.; Burghoff, M.; Kilian, W.; Knappe-Grüneberg, S.; Müller, W.; Schnabel, A.; Seifert, F.; Trahms, L.; Schmidt, U. (2010). "Limit on Lorentz and CPT violation of the bound neutron using a free precession He3/Xe129 comagnetometer".Physical Review D.82 (11) 111901.arXiv:1011.2143.Bibcode:2010PhRvD..82k1901G.doi:10.1103/PhysRevD.82.111901.S2CID 118438569.
  32. ^M. Smiciklas; et al. (2011). "New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer".Physical Review Letters.107 (17) 171604.arXiv:1106.0738.Bibcode:2011PhRvL.107q1604S.doi:10.1103/PhysRevLett.107.171604.PMID 22107506.S2CID 17459575.
  33. ^Peck, S.K.; et al. (2012). "New Limits on Local Lorentz Invariance in Mercury and Cesium".Physical Review A.86 (1) 012109.arXiv:1205.5022.Bibcode:2012PhRvA..86a2109P.doi:10.1103/PhysRevA.86.012109.S2CID 118619087.
  34. ^Hohensee, M.A.; et al. (2013). "Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium".Physical Review Letters.111 (5) 050401.arXiv:1303.2747.Bibcode:2013PhRvL.111e0401H.doi:10.1103/PhysRevLett.111.050401.PMID 23952369.S2CID 27090952.
  35. ^Allmendinger, F.; et al. (2014). "New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer".Physical Review Letters.112 (11) 110801.arXiv:1312.3225.Bibcode:2014PhRvL.112k0801A.doi:10.1103/PhysRevLett.112.110801.PMID 24702343.S2CID 8122573.

External links

[edit]
Speed/isotropy
Lorentz invariance
Time dilation
Length contraction
Relativistic energy
Fizeau/Sagnac
Alternatives
General
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hughes–Drever_experiment&oldid=1313897776"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp