Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hilbert projection theorem

From Wikipedia, the free encyclopedia
On closed convex subsets in Hilbert space
This articlerelies largely or entirely on asingle source. Relevant discussion may be found on thetalk page. Please helpimprove this article byintroducing citations to additional sources.
Find sources: "Hilbert projection theorem" – news ·newspapers ·books ·scholar ·JSTOR
(February 2020)

In mathematics, theHilbert projection theorem is a famous result ofconvex analysis that says that for every vectorx{\displaystyle x} in aHilbert spaceH{\displaystyle H} and every nonempty closed convexCH,{\displaystyle C\subseteq H,} there exists a unique vectormC{\displaystyle m\in C} for whichcx{\displaystyle \|c-x\|} is minimized over the vectorscC{\displaystyle c\in C}; that is, such thatmxcx{\displaystyle \|m-x\|\leq \|c-x\|} for everycC.{\displaystyle c\in C.}

Finite dimensional case

[edit]

Some intuition for the theorem can be obtained by considering thefirst order condition of the optimization problem.

Consider a finite dimensional real Hilbert spaceH{\displaystyle H} with a subspaceC{\displaystyle C} and a pointx.{\displaystyle x.} IfmC{\displaystyle m\in C} is aminimizer orminimum point of the functionN:CR{\displaystyle N:C\to \mathbb {R} } defined byN(c):=cx{\displaystyle N(c):=\|c-x\|} (which is the same as the minimum point ofccx2{\displaystyle c\mapsto \|c-x\|^{2}}), then derivative must be zero atm.{\displaystyle m.}

In matrix derivative notation:[1]xc2=cx,cx=2cx,c{\displaystyle {\begin{aligned}\partial \lVert x-c\rVert ^{2}&=\partial \langle c-x,c-x\rangle \\&=2\langle c-x,\partial c\rangle \end{aligned}}}Sincec{\displaystyle \partial c} is a vector inC{\displaystyle C} that represents an arbitrary tangent direction, it follows thatmx{\displaystyle m-x} must be orthogonal to every vector inC.{\displaystyle C.}

Statement

[edit]

Hilbert projection theoremFor every vectorx{\displaystyle x} in aHilbert spaceH{\displaystyle H} and every nonempty closed convexCH,{\displaystyle C\subseteq H,} there exists a unique vectormC{\displaystyle m\in C} for whichxm{\displaystyle \lVert x-m\rVert } is equal toδ:=infcCxc.{\displaystyle \delta :=\inf _{c\in C}\|x-c\|.}

If the closed subsetC{\displaystyle C} is also avector subspace ofH{\displaystyle H} then this minimizerm{\displaystyle m} is the unique element inC{\displaystyle C} such thatxm{\displaystyle x-m} isorthogonal toC.{\displaystyle C.}

Detailed elementary proof

[edit]
Proof that a minimum pointy{\displaystyle y} exists

Letδ:=infcCxc{\displaystyle \delta :=\inf _{c\in C}\|x-c\|} be the distance betweenx{\displaystyle x} andC,{\displaystyle C,}(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} a sequence inC{\displaystyle C} such that the distance squared betweenx{\displaystyle x} andcn{\displaystyle c_{n}} is less than or equal toδ2+1/n.{\displaystyle \delta ^{2}+1/n.} Letn{\displaystyle n} andm{\displaystyle m} be two integers, then the following equalities are true:cncm2=cnx2+cmx22cnx,cmx{\displaystyle \left\|c_{n}-c_{m}\right\|^{2}=\left\|c_{n}-x\right\|^{2}+\left\|c_{m}-x\right\|^{2}-2\left\langle c_{n}-x\,,\,c_{m}-x\right\rangle }and4cn+cm2x2=cnx2+cmx2+2cnx,cmx{\displaystyle 4\left\|{\frac {c_{n}+c_{m}}{2}}-x\right\|^{2}=\left\|c_{n}-x\right\|^{2}+\left\|c_{m}-x\right\|^{2}+2\left\langle c_{n}-x\,,\,c_{m}-x\right\rangle }Thereforecncm2=2cnx2+2cmx24cn+cm2x2{\displaystyle \left\|c_{n}-c_{m}\right\|^{2}=2\left\|c_{n}-x\right\|^{2}+2\left\|c_{m}-x\right\|^{2}-4\left\|{\frac {c_{n}+c_{m}}{2}}-x\right\|^{2}}(This equation is the same asthe formulaa2=2b2+2c24Ma2{\displaystyle a^{2}=2b^{2}+2c^{2}-4M_{a}^{2}} for the lengthMa{\displaystyle M_{a}} of amedian in a triangle with sides of lengtha,b,{\displaystyle a,b,} andc,{\displaystyle c,} where specifically, the triangle's vertices arex,cm,cn{\displaystyle x,c_{m},c_{n}}).

By giving an upper bound to the first two terms of the equality and by noticing that the midpoint ofcn{\displaystyle c_{n}} andcm{\displaystyle c_{m}} belong toC{\displaystyle C} and has therefore a distance greater than or equal toδ{\displaystyle \delta } fromx,{\displaystyle x,} it follows that:cncm22(δ2+1n)+2(δ2+1m)4δ2=2(1n+1m){\displaystyle \|c_{n}-c_{m}\|^{2}\;\leq \;2\left(\delta ^{2}+{\frac {1}{n}}\right)+2\left(\delta ^{2}+{\frac {1}{m}}\right)-4\delta ^{2}=2\left({\frac {1}{n}}+{\frac {1}{m}}\right)}

The last inequality proves that(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} is aCauchy sequence. SinceC{\displaystyle C} is complete, the sequence is therefore convergent to a pointmC,{\displaystyle m\in C,} whose distance fromx{\displaystyle x} is minimal.{\displaystyle \blacksquare }

Proof thatm{\displaystyle m} is unique

Letm1{\displaystyle m_{1}} andm2{\displaystyle m_{2}} be twominimum points. Then:m2m12=2m1x2+2m2x24m1+m22x2{\displaystyle \|m_{2}-m_{1}\|^{2}=2\|m_{1}-x\|^{2}+2\|m_{2}-x\|^{2}-4\left\|{\frac {m_{1}+m_{2}}{2}}-x\right\|^{2}}

Sincem1+m22{\displaystyle {\frac {m_{1}+m_{2}}{2}}} belongs toC,{\displaystyle C,} we havem1+m22x2δ2{\displaystyle \left\|{\frac {m_{1}+m_{2}}{2}}-x\right\|^{2}\geq \delta ^{2}} and thereforem2m122δ2+2δ24δ2=0.{\displaystyle \|m_{2}-m_{1}\|^{2}\leq 2\delta ^{2}+2\delta ^{2}-4\delta ^{2}=0.}

Hencem1=m2,{\displaystyle m_{1}=m_{2},} which proves uniqueness.{\displaystyle \blacksquare }

Proof of characterization of minimum point whenC{\displaystyle C} is a closed vector subspace

Assume thatC{\displaystyle C} is a closed vector subspace ofH.{\displaystyle H.} It must be shown the minimizerm{\displaystyle m} is the unique element inC{\displaystyle C} such thatmx,c=0{\displaystyle \langle m-x,c\rangle =0} for everycC.{\displaystyle c\in C.}

Proof that the condition is sufficient: LetzC{\displaystyle z\in C} be such thatzx,c=0{\displaystyle \langle z-x,c\rangle =0} for allcC.{\displaystyle c\in C.} IfcC{\displaystyle c\in C} thenczC{\displaystyle c-z\in C} and socx2=(zx)+(cz)2=zx2+cz2+2zx,cz=zx2+cz2{\displaystyle \|c-x\|^{2}=\|(z-x)+(c-z)\|^{2}=\|z-x\|^{2}+\|c-z\|^{2}+2\langle z-x,c-z\rangle =\|z-x\|^{2}+\|c-z\|^{2}} which implies thatzx2cx2.{\displaystyle \|z-x\|^{2}\leq \|c-x\|^{2}.} BecausecC{\displaystyle c\in C} was arbitrary, this proves thatzx=infcCcx{\displaystyle \|z-x\|=\inf _{c\in C}\|c-x\|} and soz{\displaystyle z} is a minimum point.

Proof that the condition is necessary: LetmC{\displaystyle m\in C} be the minimum point. LetcC{\displaystyle c\in C} andtR.{\displaystyle t\in \mathbb {R} .}Becausem+tcC,{\displaystyle m+tc\in C,} the minimality ofm{\displaystyle m} guarantees thatmx(m+tc)x.{\displaystyle \|m-x\|\leq \|(m+tc)-x\|.} Thus(m+tc)x2mx2=2tmx,c+t2c2{\displaystyle \|(m+tc)-x\|^{2}-\|m-x\|^{2}=2t\langle m-x,c\rangle +t^{2}\|c\|^{2}}is always non-negative andmx,c{\displaystyle \langle m-x,c\rangle } must be a real number. Ifmx,c0{\displaystyle \langle m-x,c\rangle \neq 0} then the mapf(t):=2tmx,c+t2c2{\displaystyle f(t):=2t\langle m-x,c\rangle +t^{2}\|c\|^{2}} has a minimum att0:=mx,cc2{\displaystyle t_{0}:=-{\frac {\langle m-x,c\rangle }{\|c\|^{2}}}} and moreover,f(t0)<0,{\displaystyle f\left(t_{0}\right)<0,} which is a contradiction. Thusmx,c=0.{\displaystyle \langle m-x,c\rangle =0.}{\displaystyle \blacksquare }

Proof by reduction to a special case

[edit]

It suffices to prove the theorem in the case ofx=0{\displaystyle x=0} because the general case follows from the statement below by replacingC{\displaystyle C} withCx.{\displaystyle C-x.}

Hilbert projection theorem (casex=0{\displaystyle x=0})[2]For every nonempty closed convex subsetCH{\displaystyle C\subseteq H} of aHilbert spaceH,{\displaystyle H,} there exists a unique vectormC{\displaystyle m\in C} such thatinfcCc=m.{\displaystyle \inf _{c\in C}\|c\|=\|m\|.}

Furthermore, lettingd:=infcCc,{\displaystyle d:=\inf _{c\in C}\|c\|,} if(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} isany sequence inC{\displaystyle C} such thatlimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} inR{\displaystyle \mathbb {R} }[note 1] thenlimncn=m{\displaystyle \lim _{n\to \infty }c_{n}=m} inH.{\displaystyle H.}

Proof

LetC{\displaystyle C} be as described in this theorem and letd:=infcCc.{\displaystyle d:=\inf _{c\in C}\|c\|.}This theorem will follow from the following lemmas.

Lemma 1Ifc:=(cn)n=1{\displaystyle c_{\bullet }:=\left(c_{n}\right)_{n=1}^{\infty }} isany sequence inC{\displaystyle C} such thatlimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} inR{\displaystyle \mathbb {R} } then there exists somecC{\displaystyle c\in C} such thatlimncn=c{\displaystyle \lim _{n\to \infty }c_{n}=c} inH.{\displaystyle H.} Furthermore,c=d.{\displaystyle \|c\|=d.}

Proof of Lemma 1
Vectors involved in the parallelogram law:x+y2+xy2=2x2+2y2.{\displaystyle \|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}.}

BecauseC{\displaystyle C} is convex, ifm,nN{\displaystyle m,n\in \mathbb {N} } then12(cm+cn)C{\displaystyle {\frac {1}{2}}\left(c_{m}+c_{n}\right)\in C} so that by definition of the infimum,d12(cm+cn),{\displaystyle d\leq \left\|{\frac {1}{2}}\left(c_{m}+c_{n}\right)\right\|,} which implies that4d2cm+cn2.{\displaystyle 4d^{2}\leq \left\|c_{m}+c_{n}\right\|^{2}.} By theparallelogram law,cm+cn2+cmcn2=2cm2+2cn2{\displaystyle \left\|c_{m}+c_{n}\right\|^{2}+\left\|c_{m}-c_{n}\right\|^{2}=2\left\|c_{m}\right\|^{2}+2\left\|c_{n}\right\|^{2}}where4d2cm+cn2{\displaystyle 4d^{2}\leq \left\|c_{m}+c_{n}\right\|^{2}} now implies4d2+cmcn2  2cm2+2cn2{\displaystyle 4d^{2}+\left\|c_{m}-c_{n}\right\|^{2}~\leq ~2\left\|c_{m}\right\|^{2}+2\left\|c_{n}\right\|^{2}}and socmcn2  2cm2+2cn24d2{\displaystyle {\begin{alignedat}{4}\left\|c_{m}-c_{n}\right\|^{2}~\leq ~2\left\|c_{m}\right\|^{2}+2\left\|c_{n}\right\|^{2}-4d^{2}\end{alignedat}}}The assumptionlimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} implies that the right hand side (RHS) of the above inequality can be made arbitrary close to0{\displaystyle 0} by makingm{\displaystyle m} andn{\displaystyle n} sufficiently large.[note 2] The same must consequently also be true of the inequality's left hand sidecmcn2{\displaystyle \left\|c_{m}-c_{n}\right\|^{2}} and thus also ofcmcn,{\displaystyle \left\|c_{m}-c_{n}\right\|,} which proves that(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} is a Cauchy sequence inH.{\displaystyle H.}

SinceH{\displaystyle H} is complete, there exists somecH{\displaystyle c\in H} such thatlimncn=c{\displaystyle \lim _{n\to \infty }c_{n}=c} inH.{\displaystyle H.} Because everycn{\displaystyle c_{n}} belongs toC,{\displaystyle C,} which is aclosed subset ofH,{\displaystyle H,} their limitc{\displaystyle c} must also belongs to this closed subset, which proves thatcC.{\displaystyle c\in C.} Since the norm:HR{\displaystyle \|\,\cdot \,\|:H\to \mathbb {R} } is a continuous function,limncn=c{\displaystyle \lim _{n\to \infty }c_{n}=c} inH{\displaystyle H} implies thatlimncn=c{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=\|c\|} inR.{\displaystyle \mathbb {R} .} Butlimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} also holds (by assumption) so thatc=d{\displaystyle \|c\|=d} (because limits inR{\displaystyle \mathbb {R} } are unique).{\displaystyle \blacksquare }

Lemma 2A sequence(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} satisfying the hypotheses of Lemma 1 exists.

Proof of Lemma 2

The existence of the sequence follows from the definition of theinfimum, as is now shown. The setS:={c:cC}{\displaystyle S:=\{\|c\|:c\in C\}} is a non-empty subset of non-negative real numbers andd:=infcCc=infS.{\displaystyle d:=\inf _{c\in C}\|c\|=\inf S.} Letn1{\displaystyle n\geq 1} be an integer. BecauseinfS<d+1n,{\displaystyle \inf S<d+{\frac {1}{n}},} there exists somesnS{\displaystyle s_{n}\in S} such thatsn<d+1n.{\displaystyle s_{n}<d+{\frac {1}{n}}.} SincesnS,{\displaystyle s_{n}\in S,}d=infSsn{\displaystyle d=\inf S\leq s_{n}} holds (by definition of the infimum). Thusdsn<d+1n{\displaystyle d\leq s_{n}<d+{\frac {1}{n}}} and now thesqueeze theorem implies thatlimnsn=d{\displaystyle \lim _{n\to \infty }s_{n}=d} inR.{\displaystyle \mathbb {R} .} (This first part of the proof works for any non-empty subset ofSR{\displaystyle S\subseteq \mathbb {R} } for whichd:=infsSs{\displaystyle d:=\inf _{s\in S}s} is finite).

For everynN,{\displaystyle n\in \mathbb {N} ,} the fact thatsnS={c:cC}{\displaystyle s_{n}\in S=\{\|c\|:c\in C\}} means that there exists somecnC{\displaystyle c_{n}\in C} such thatsn=cn.{\displaystyle s_{n}=\left\|c_{n}\right\|.} The convergencelimnsn=d{\displaystyle \lim _{n\to \infty }s_{n}=d} inR{\displaystyle \mathbb {R} } thus becomeslimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} inR.{\displaystyle \mathbb {R} .}{\displaystyle \blacksquare }

Lemma 2 and Lemma 1 together prove that there exists somecC{\displaystyle c\in C} such thatc=d.{\displaystyle \|c\|=d.} Lemma 1 can be used to prove uniqueness as follows. SupposebC{\displaystyle b\in C} is such thatb=d{\displaystyle \|b\|=d} and denote the sequenceb,c,b,c,b,c,{\displaystyle b,c,b,c,b,c,\ldots } by(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} so that thesubsequence(c2n)n=1{\displaystyle \left(c_{2n}\right)_{n=1}^{\infty }} of even indices is the constant sequencec,c,c,{\displaystyle c,c,c,\ldots } while the subsequence(c2n1)n=1{\displaystyle \left(c_{2n-1}\right)_{n=1}^{\infty }} of odd indices is the constant sequenceb,b,b,.{\displaystyle b,b,b,\ldots .} Becausecn=d{\displaystyle \left\|c_{n}\right\|=d} for everynN,{\displaystyle n\in \mathbb {N} ,}limncn=limnd=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=\lim _{n\to \infty }d=d} inR,{\displaystyle \mathbb {R} ,} which shows that the sequence(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} satisfies the hypotheses of Lemma 1. Lemma 1 guarantees the existence of somexC{\displaystyle x\in C} such thatlimncn=x{\displaystyle \lim _{n\to \infty }c_{n}=x} inH.{\displaystyle H.} Because(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} converges tox,{\displaystyle x,} so do all of its subsequences. In particular, the subsequencec,c,c,{\displaystyle c,c,c,\ldots } converges tox,{\displaystyle x,} which implies thatx=c{\displaystyle x=c} (because limits inH{\displaystyle H} are unique and this constant subsequence also converges toc{\displaystyle c}). Similarly,x=b{\displaystyle x=b} because the subsequenceb,b,b,{\displaystyle b,b,b,\ldots } converges to bothx{\displaystyle x} andb.{\displaystyle b.} Thusb=c,{\displaystyle b=c,} which proves the theorem.{\displaystyle \blacksquare }

Consequences

[edit]

PropositionIfC{\displaystyle C} is a closed vector subspace of a Hilbert spaceH{\displaystyle H} then[note 3]H=CC.{\displaystyle H=C\oplus C^{\bot }.}

Proof[3]

Proof thatCC={0}{\displaystyle C\cap C^{\bot }=\{0\}}:

IfcCC{\displaystyle c\in C\cap C^{\bot }} then0=c,c=c2,{\displaystyle 0=\langle \,c,\,c\,\rangle =\|c\|^{2},} which impliesc=0.{\displaystyle c=0.}{\displaystyle \blacksquare }


Proof thatC{\displaystyle C^{\bot }} is a closed vector subspace ofH{\displaystyle H}:

LetP:=cCF{\displaystyle P:=\prod _{c\in C}\mathbb {F} } whereF{\displaystyle \mathbb {F} } is the underlying scalar field ofH{\displaystyle H} and defineL:HPh(h,c)cC{\displaystyle {\begin{alignedat}{4}L:\,&H&&\to \,&&P\\&h&&\mapsto \,&&\left(\langle \,h,\,c\,\rangle \right)_{c\in C}\\\end{alignedat}}}which is continuous and linear because this is true of each of its coordinateshh,c.{\displaystyle h\mapsto \langle h,c\rangle .} The setC=L1(0)=L1({0}){\displaystyle C^{\bot }=L^{-1}(0)=L^{-1}\left(\{0\}\right)} is closed inH{\displaystyle H} because{0}{\displaystyle \{0\}} is closed inP{\displaystyle P} andL:HP{\displaystyle L:H\to P} is continuous. The kernel of any linear map is a vector subspace of its domain, which is whyC=kerL{\displaystyle C^{\bot }=\ker L} is a vector subspace ofH.{\displaystyle H.}{\displaystyle \blacksquare }


Proof thatC+C=H{\displaystyle C+C^{\bot }=H}:

LetxH.{\displaystyle x\in H.} The Hilbert projection theorem guarantees the existence of a uniquemC{\displaystyle m\in C} such thatxmxc for all cC{\displaystyle \|x-m\|\leq \|x-c\|{\text{ for all }}c\in C} (or equivalently, for allxcxC{\displaystyle x-c\in x-C}). Letp:=xm{\displaystyle p:=x-m} so thatx=m+pC+p{\displaystyle x=m+p\in C+p} and it remains to show thatpC.{\displaystyle p\in C^{\bot }.} The inequality above can be rewritten as:pz for all zxC.{\displaystyle \|p\|\leq \|z\|\quad {\text{ for all }}z\in x-C.}BecausemC{\displaystyle m\in C} andC{\displaystyle C} is a vector space,m+C=C{\displaystyle m+C=C} andC=C,{\displaystyle C=-C,} which implies thatxC=x+C=p+m+C=p+C.{\displaystyle x-C=x+C=p+m+C=p+C.} The previous inequality thus becomespz for all zp+C.{\displaystyle \|p\|\leq \|z\|\quad {\text{ for all }}z\in p+C.}or equivalently,pp+c for all cC.{\displaystyle \|p\|\leq \|p+c\|\quad {\text{ for all }}c\in C.} But this last statement is true if and only ifp,c=0{\displaystyle \langle \,p,c\,\rangle =0} everycC.{\displaystyle c\in C.} ThuspC.{\displaystyle p\in C^{\bot }.}{\displaystyle \blacksquare }

Properties

[edit]

Expression as a global minimum

The statement and conclusion of the Hilbert projection theorem can be expressed in terms of global minimums of the following functions. Their notation will also be used to simplify certain statements.

Given a non-empty subsetCH{\displaystyle C\subseteq H} and somexH,{\displaystyle x\in H,} define a functiondC,x:C[0,) by cxc.{\displaystyle d_{C,x}:C\to [0,\infty )\quad {\text{ by }}c\mapsto \|x-c\|.} Aglobal minimum point ofdC,x,{\displaystyle d_{C,x},} if one exists, is any pointm{\displaystyle m} indomaindC,x=C{\displaystyle \,\operatorname {domain} d_{C,x}=C\,} such thatdC,x(m)dC,x(c) for all cC,{\displaystyle d_{C,x}(m)\,\leq \,d_{C,x}(c)\quad {\text{ for all }}c\in C,} in which casedC,x(m)=mx{\displaystyle d_{C,x}(m)=\|m-x\|} is equal to theglobal minimum value of the functiondC,x,{\displaystyle d_{C,x},} which is:infcCdC,x(c)=infcCxc.{\displaystyle \inf _{c\in C}d_{C,x}(c)=\inf _{c\in C}\|x-c\|.}

Effects of translations and scalings

When this global minimum pointm{\displaystyle m} exists and is unique then denote it bymin(C,x);{\displaystyle \min(C,x);} explicitly, the defining properties ofmin(C,x){\displaystyle \min(C,x)} (if it exists) are:min(C,x)C and xmin(C,x)xc for all cC.{\displaystyle \min(C,x)\in C\quad {\text{ and }}\quad \left\|x-\min(C,x)\right\|\leq \|x-c\|\quad {\text{ for all }}c\in C.}The Hilbert projection theorem guarantees that this unique minimum point exists wheneverC{\displaystyle C} is a non-empty closed and convex subset of a Hilbert space. However, such a minimum point can also exist in non-convex or non-closed subsets as well; for instance, just as long isC{\displaystyle C} is non-empty, ifxC{\displaystyle x\in C} thenmin(C,x)=x.{\displaystyle \min(C,x)=x.}

IfCH{\displaystyle C\subseteq H} is a non-empty subset,s{\displaystyle s} is any scalar, andx,x0H{\displaystyle x,x_{0}\in H} are any vectors thenmin(sC+x0,sx+x0)=smin(C,x)+x0{\displaystyle \,\min \left(sC+x_{0},sx+x_{0}\right)=s\min(C,x)+x_{0}}which implies:min(sC,sx)=smin(C,x)min(C,x)=min(C,x){\displaystyle {\begin{alignedat}{6}\min &(sC,sx)&&=s&&\min(C,x)\\\min &(-C,-x)&&=-&&\min(C,x)\\\end{alignedat}}}min(C+x0,x+x0)=min(C,x)+x0min(Cx0,xx0)=min(C,x)x0{\displaystyle {\begin{alignedat}{6}\min \left(C+x_{0},x+x_{0}\right)&=\min(C,x)+x_{0}\\\min \left(C-x_{0},x-x_{0}\right)&=\min(C,x)-x_{0}\\\end{alignedat}}}min(C,x)=min(C+x,0)xmin(C,0)+x=min(C+x,x)min(Cx,0)=min(C,x)x{\displaystyle {\begin{alignedat}{6}\min &(C,-x){}&&=\min(C+x,0)-x\\\min &(C,0)\;+\;x\;\;\;\;&&=\min(C+x,x)\\\min &(C-x,0){}&&=\min(C,x)-x\\\end{alignedat}}}

Examples

The following counter-example demonstrates a continuous linear isomorphismA:HH{\displaystyle A:H\to H} for whichmin(A(C),A(x))A(min(C,x)).{\displaystyle \,\min(A(C),A(x))\neq A(\min(C,x)).} EndowH:=R2{\displaystyle H:=\mathbb {R} ^{2}} with thedot product, letx0:=(0,1),{\displaystyle x_{0}:=(0,1),} and for every realsR,{\displaystyle s\in \mathbb {R} ,} letLs:={(x,sx):xR}{\displaystyle L_{s}:=\{(x,sx):x\in \mathbb {R} \}} be the line of slopes{\displaystyle s} through the origin, where it is readily verified thatmin(Ls,x0)=s1+s2(1,s).{\displaystyle \min \left(L_{s},x_{0}\right)={\frac {s}{1+s^{2}}}(1,s).} Pick a real numberr0{\displaystyle r\neq 0} and defineA:R2R2{\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} byA(x,y):=(rx,y){\displaystyle A(x,y):=(rx,y)} (so this map scales thex{\displaystyle x-}coordinate byr{\displaystyle r} while leaving they{\displaystyle y-}coordinate unchanged). ThenA:R2R2{\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} is an invertible continuous linear operator that satisfiesA(Ls)=Ls/r{\displaystyle A\left(L_{s}\right)=L_{s/r}} andA(x0)=x0,{\displaystyle A\left(x_{0}\right)=x_{0},} so thatmin(A(Ls),A(x0))=sr2+s2(1,s){\displaystyle \,\min \left(A\left(L_{s}\right),A\left(x_{0}\right)\right)={\frac {s}{r^{2}+s^{2}}}(1,s)} andA(min(Ls,x0))=s1+s2(r,s).{\displaystyle A\left(\min \left(L_{s},x_{0}\right)\right)={\frac {s}{1+s^{2}}}\left(r,s\right).} Consequently, ifC:=Ls{\displaystyle C:=L_{s}} withs0{\displaystyle s\neq 0} and if(r,s)(±1,1){\displaystyle (r,s)\neq (\pm 1,1)} thenmin(A(C),A(x0))A(min(C,x0)).{\displaystyle \,\min(A(C),A\left(x_{0}\right))\neq A\left(\min \left(C,x_{0}\right)\right).}

Iterated projections

[edit]

For any closed convex nonempty subsetCH{\displaystyle C\subset H}, letPC:HC{\displaystyle P_{C}:H\to C} be the projection function.

If there are multiple closed convex subsetsC1,C2,,Cn{\displaystyle C_{1},C_{2},\dots ,C_{n}}, then one can approximate the projection operatorPC1Cn{\displaystyle P_{C_{1}\cap \dots \cap C_{n}}} by applyingPC1,PC2,,PCn{\displaystyle P_{C_{1}},P_{C_{2}},\dots ,P_{C_{n}}} in sequence, then do it again and again. That is, one can approximate(PCnPC2PC1)kPC1Cn{\displaystyle (P_{C_{n}}\dots P_{C_{2}}P_{C_{1}})^{k}\to P_{C_{1}\cap \dots \cap C_{n}}} ask{\displaystyle k\to \infty }. TheKaczmarz method is a commonly used special case. Such methods can be computationally effective. For example, ifC{\displaystyle C} is a complicated shape, then projecting directly toC{\displaystyle C} may be difficult. However,C{\displaystyle C} can be approximated as an intersection of simple objects likehalf-spaces,hyperplanes, finite-dimensional subspaces, orcones.[4]

IfC{\displaystyle C} is a closed subspace, then it is convex. In this case, the projection functionP:HC{\displaystyle P:H\to C} is an orthogonal projection (a continuous linear operator that is self-adjoint). A classic theorem states that, ifC1,,Cn{\displaystyle C_{1},\dots ,C_{n}} are closed subspaces, then[5]limk(PC1PCn)kxPC1Cnx=0,xH{\displaystyle \lim _{k\to \infty }\|(P_{C_{1}}\cdots P_{C_{n}})^{k}x-P_{C_{1}\cap \dots \cap C_{n}}x\|=0,\quad \forall x\in H}

See also

[edit]

Notes

[edit]
  1. ^Because the norm:HR{\displaystyle \|\cdot \|:H\to \mathbb {R} } is continuous, iflimnxn{\displaystyle \lim _{n\to \infty }x_{n}} converges inH{\displaystyle H} then necessarilylimnxn{\displaystyle \lim _{n\to \infty }\left\|x_{n}\right\|} converges inR.{\displaystyle \mathbb {R} .} But in general, the converse is not guaranteed. However, under this theorem's hypotheses, knowing thatlimncn=d{\displaystyle \lim _{n\to \infty }\left\|c_{n}\right\|=d} inR{\displaystyle \mathbb {R} }is sufficient to conclude thatlimncn{\displaystyle \lim _{n\to \infty }c_{n}} converges inH.{\displaystyle H.}
  2. ^Explicitly, this means that given anyϵ>0{\displaystyle \epsilon >0} there exists some integerN>0{\displaystyle N>0} such that "the quantity" isϵ{\displaystyle \,\leq \epsilon } wheneverm,nN.{\displaystyle m,n\geq N.} Here, "the quantity" refers to the inequality's right hand side2cm2+2cn24d2{\displaystyle 2\left\|c_{m}\right\|^{2}+2\left\|c_{n}\right\|^{2}-4d^{2}} and later in the proof, "the quantity" will also refer tocmcn2{\displaystyle \left\|c_{m}-c_{n}\right\|^{2}} and thencmcn.{\displaystyle \left\|c_{m}-c_{n}\right\|.} By definition of "Cauchy sequence,"(cn)n=1{\displaystyle \left(c_{n}\right)_{n=1}^{\infty }} is Cauchy inH{\displaystyle H} if and only if "the quantity"cmcn{\displaystyle \left\|c_{m}-c_{n}\right\|} satisfies this aforementioned condition.
  3. ^Technically,H=KK{\displaystyle H=K\oplus K^{\bot }} means that the addition mapK×KH{\displaystyle K\times K^{\bot }\to H} defined by(k,p)k+p{\displaystyle (k,p)\mapsto k+p} is a surjectivelinear isomorphism andhomeomorphism. See the article oncomplemented subspaces for more details.

References

[edit]
  1. ^Petersen, Kaare."The Matrix Cookbook"(PDF). Retrieved9 January 2021.
  2. ^Rudin 1991, pp. 306–309.
  3. ^Rudin 1991, pp. 307−309.
  4. ^Deutsch, Frank (2001),"The Method of Alternating Projections",Best Approximation in Inner Product Spaces, New York, NY: Springer New York, pp. 193–235,doi:10.1007/978-1-4684-9298-9_9,ISBN 978-1-4419-2890-0
  5. ^Netyanun, Anupan; Solmon, Donald C. (August 2006)."Iterated Products of Projections in Hilbert Space".The American Mathematical Monthly.113 (7):644–648.doi:10.1080/00029890.2006.11920347.ISSN 0002-9890.

Bibliography

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Other results
Maps
Examples
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hilbert_projection_theorem&oldid=1316331610"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp