Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Helmholtz decomposition

From Wikipedia, the free encyclopedia
Certain vector fields are the sum of an irrotational and a solenoidal vector field
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Inphysics andmathematics, theHelmholtz decomposition theorem or thefundamental theorem of vector calculus[1][2][3][4][5][6][7] states that certain differentiablevector fields can be resolved into the sum of anirrotational (curl-free) vector field and asolenoidal (divergence-free) vector field. Inphysics, often only the decomposition of sufficientlysmooth, rapidly decayingvector fields in three dimensions is discussed. It is named afterHermann von Helmholtz.

Definition

[edit]

For a vector fieldFC1(V,Rn){\displaystyle \mathbf {F} \in C^{1}(V,\mathbb {R} ^{n})} defined on a domainVRn{\displaystyle V\subseteq \mathbb {R} ^{n}}, a Helmholtz decomposition is a pair of vector fieldsGC1(V,Rn){\displaystyle \mathbf {G} \in C^{1}(V,\mathbb {R} ^{n})} andRC1(V,Rn){\displaystyle \mathbf {R} \in C^{1}(V,\mathbb {R} ^{n})} such that:F(r)=G(r)+R(r),G(r)=Φ(r),R(r)=0.{\displaystyle {\begin{aligned}\mathbf {F} (\mathbf {r} )&=\mathbf {G} (\mathbf {r} )+\mathbf {R} (\mathbf {r} ),\\\mathbf {G} (\mathbf {r} )&=-\nabla \Phi (\mathbf {r} ),\\\nabla \cdot \mathbf {R} (\mathbf {r} )&=0.\end{aligned}}}Here,ΦC2(V,R){\displaystyle \Phi \in C^{2}(V,\mathbb {R} )} is ascalar potential,Φ{\displaystyle \nabla \Phi } is itsgradient, andR{\displaystyle \nabla \cdot \mathbf {R} } is thedivergence of the vector fieldR{\displaystyle \mathbf {R} }. The irrotational vector fieldG{\displaystyle \mathbf {G} } is called agradient field andR{\displaystyle \mathbf {R} } is called asolenoidal field orrotation field. This decomposition does not exist for all vector fields and is notunique.[8]

History

[edit]

The Helmholtz decomposition in three dimensions was first described in 1849[9] byGeorge Gabriel Stokes for a theory ofdiffraction.Hermann von Helmholtz published his paper on somehydrodynamic basic equations in 1858,[10][11] which was part of his research on theHelmholtz's theorems describing the motion of fluid in the vicinity of vortex lines.[11] Their derivation required the vector fields to decay sufficiently fast at infinity. Later, this condition could be relaxed, and the Helmholtz decomposition could be extended to higher dimensions.[8][12][13] ForRiemannian manifolds, the Helmholtz-Hodge decomposition usingdifferential geometry andtensor calculus was derived.[8][11][14][15]

The decomposition has become an important tool for many problems intheoretical physics,[11][14] but has also found applications inanimation,computer vision as well asrobotics.[15]

Three-dimensional space

[edit]

Many physics textbooks restrict the Helmholtz decomposition to the three-dimensional space and limit its application to vector fields that decay sufficiently fast at infinity or tobump functions that are defined on abounded domain. Then, avector potentialA{\displaystyle A} can be defined, such that the rotation field is given byR=×A{\displaystyle \mathbf {R} =\nabla \times \mathbf {A} }, using thecurl of a vector field.[16]

LetF{\displaystyle \mathbf {F} } be a vector field on a bounded domainVR3{\displaystyle V\subseteq \mathbb {R} ^{3}}, which is twice continuously differentiable insideV{\displaystyle V}, and letS{\displaystyle S} be the surface that encloses the domainV{\displaystyle V} with outward surface normaln^{\displaystyle \mathbf {\hat {n}} '}. ThenF{\displaystyle \mathbf {F} } can be decomposed into a curl-free component and a divergence-free component as follows:[17]

F=Φ+×A,{\displaystyle \mathbf {F} =-\nabla \Phi +\nabla \times \mathbf {A} ,}whereΦ(r)=14πVF(r)|rr|dV14πSn^F(r)|rr|dSA(r)=14πV×F(r)|rr|dV14πSn^×F(r)|rr|dS{\displaystyle {\begin{aligned}\Phi (\mathbf {r} )&={\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\cdot \mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} S'\\[8pt]\mathbf {A} (\mathbf {r} )&={\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\times \mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} S'\end{aligned}}}

and{\displaystyle \nabla '} is thenabla operator with respect tor{\displaystyle \mathbf {r'} }, notr{\displaystyle \mathbf {r} }.

IfV=R3{\displaystyle V=\mathbb {R} ^{3}} and is therefore unbounded, andF{\displaystyle \mathbf {F} } vanishes faster than1/r{\displaystyle 1/r} asr{\displaystyle r\to \infty }, then one has[18]

Φ(r)=14πR3F(r)|rr|dVA(r)=14πR3×F(r)|rr|dV{\displaystyle {\begin{aligned}\Phi (\mathbf {r} )&={\frac {1}{4\pi }}\int _{\mathbb {R} ^{3}}{\frac {\nabla '\cdot \mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} V'\\[8pt]\mathbf {A} (\mathbf {r} )&={\frac {1}{4\pi }}\int _{\mathbb {R} ^{3}}{\frac {\nabla '\times \mathbf {F} (\mathbf {r} ')}{|\mathbf {r} -\mathbf {r} '|}}\,\mathrm {d} V'\end{aligned}}}This holds in particular ifF{\displaystyle \mathbf {F} } is twice continuously differentiable inR3{\displaystyle \mathbb {R} ^{3}} and of bounded support.

Derivation

[edit]
Proof

Suppose we have a vector functionF(r){\displaystyle \mathbf {F} (\mathbf {r} )} of which we know the curl,×F{\displaystyle \nabla \times \mathbf {F} }, and the divergence,F{\displaystyle \nabla \cdot \mathbf {F} }, in the domain and the fields on the boundary. Writing the function using thedelta function in the formδ3(rr)=14π21|rr|,{\displaystyle \delta ^{3}(\mathbf {r} -\mathbf {r} ')=-{\frac {1}{4\pi }}\nabla ^{2}{\frac {1}{|\mathbf {r} -\mathbf {r} '|}}\,,}where2{\displaystyle \nabla ^{2}} is theLaplacian operator, we have

F(r)=VF(r)δ3(rr)dV=VF(r)(14π21|rr|)dV{\displaystyle {\begin{aligned}\mathbf {F} (\mathbf {r} )&=\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\delta ^{3}(\mathbf {r} -\mathbf {r} ')\mathrm {d} V'\\&=\int _{V}\mathbf {F} (\mathbf {r} ')\left(-{\frac {1}{4\pi }}\nabla ^{2}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\right)\mathrm {d} V'\end{aligned}}}

Now, changing the meaning of2{\displaystyle \nabla ^{2}} to thevector Laplacian operator (we have the right to do so because this laplacian is with respect tor{\displaystyle \mathbf {r} } therefore it sees the vector fieldF(r){\displaystyle \mathbf {F} (\mathbf {r'} )} as a constant), we can moveF(r){\displaystyle \mathbf {F} (\mathbf {r'} )} to the right of the2{\displaystyle \nabla ^{2}}operator.

F(r)=V14π2F(r)|rr|dV=14π2VF(r)|rr|dV=14π[(VF(r)|rr|dV)×(×VF(r)|rr|dV)]=14π[(VF(r)1|rr|dV)+×(VF(r)×1|rr|dV)]=14π[(VF(r)1|rr|dV)×(VF(r)×1|rr|dV)]{\displaystyle {\begin{aligned}\mathbf {F} (\mathbf {r} )&=\int _{V}-{\frac {1}{4\pi }}\nabla ^{2}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\\&=-{\frac {1}{4\pi }}\nabla ^{2}\int _{V}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\\&=-{\frac {1}{4\pi }}\left[\nabla \left(\nabla \cdot \int _{V}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)-\nabla \times \left(\nabla \times \int _{V}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]\\&=-{\frac {1}{4\pi }}\left[\nabla \left(\int _{V}\mathbf {F} (\mathbf {r} ')\cdot \nabla {\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)+\nabla \times \left(\int _{V}\mathbf {F} (\mathbf {r} ')\times \nabla {\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]\\&=-{\frac {1}{4\pi }}\left[-\nabla \left(\int _{V}\mathbf {F} (\mathbf {r} ')\cdot \nabla '{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)-\nabla \times \left(\int _{V}\mathbf {F} (\mathbf {r} ')\times \nabla '{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]\end{aligned}}}

where we have used the vector Laplacian identity:2a=(a)×(×a) ,{\displaystyle \nabla ^{2}\mathbf {a} =\nabla (\nabla \cdot \mathbf {a} )-\nabla \times (\nabla \times \mathbf {a} )\ ,}

differentiation/integration with respect tor{\displaystyle \mathbf {r} '}by/dV,{\displaystyle \nabla '/\mathrm {d} V',} and in the last line, linearity of function arguments:1|rr|=1|rr| .{\displaystyle \nabla {\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}=-\nabla '{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\ .}

(But the transformation

V14π2F(r)|rr|dV=14π2VF(r)|rr|dV{\displaystyle \int _{V}-{\frac {1}{4\pi }}\nabla ^{2}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'=-{\frac {1}{4\pi }}\nabla ^{2}\int _{V}{\frac {\mathbf {F} (\mathbf {r} ')}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'}is not mathematically correct since the last integral diverges as ln R at R tends to infinity. This divergence of the integral is significant for the electromagnetic fieldsE1/R2{\displaystyle \mathbf {E} \sim 1/R^{2}} - this near zone fields.(No the above is not generally true , consider the triple integral0101011x2+y2+z2dxdydz=1.19004{\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}{\frac {1}{\sqrt {x^{2}+y^{2}+z^{2}}}}dxdydz=1.19004}, looks like it diverges but it converges. If the vector field is twice differentiable, hence continuous with continuous first partial derivatives all the integrals in this proof converge))Then using the vectorial identities

aψ=ψ(a)+(ψa)a×ψ=ψ(×a)×(ψa){\displaystyle {\begin{aligned}\mathbf {a} \cdot \nabla \psi &=-\psi (\nabla \cdot \mathbf {a} )+\nabla \cdot (\psi \mathbf {a} )\\\mathbf {a} \times \nabla \psi &=\psi (\nabla \times \mathbf {a} )-\nabla \times (\psi \mathbf {a} )\end{aligned}}}

we getF(r)=14π[(VF(r)|rr|dV+VF(r)|rr|dV)×(V×F(r)|rr|dVV×F(r)|rr|dV)].{\displaystyle {\begin{aligned}\mathbf {F} (\mathbf {r} )=-{\frac {1}{4\pi }}{\bigg [}&-\nabla \left(-\int _{V}{\frac {\nabla '\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'+\int _{V}\nabla '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\\&-\nabla \times \left(\int _{V}{\frac {\nabla '\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-\int _{V}\nabla '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right){\bigg ]}.\end{aligned}}}

Thanks to thedivergence theorem the equation can be rewritten as

F(r)=14π[(VF(r)|rr|dV+Sn^F(r)|rr|dS)×(V×F(r)|rr|dVSn^×F(r)|rr|dS)]=[14πVF(r)|rr|dV14πSn^F(r)|rr|dS]+×[14πV×F(r)|rr|dV14πSn^×F(r)|rr|dS]{\displaystyle {\begin{aligned}\mathbf {F} (\mathbf {r} )&=-{\frac {1}{4\pi }}{\bigg [}-\nabla \left(-\int _{V}{\frac {\nabla '\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'+\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right)\\&\qquad \qquad -\nabla \times \left(\int _{V}{\frac {\nabla '\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right){\bigg ]}\\&=-\nabla \left[{\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right]\\&\quad +\nabla \times \left[{\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right]\end{aligned}}}

with outward surface normaln^{\displaystyle \mathbf {\hat {n}} '}.

Defining

Φ(r)14πVF(r)|rr|dV14πSn^F(r)|rr|dS{\displaystyle \Phi (\mathbf {r} )\equiv {\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'}A(r)14πV×F(r)|rr|dV14πSn^×F(r)|rr|dS{\displaystyle \mathbf {A} (\mathbf {r} )\equiv {\frac {1}{4\pi }}\int _{V}{\frac {\nabla '\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'}

we finally obtainF=Φ+×A.{\displaystyle \mathbf {F} =-\nabla \Phi +\nabla \times \mathbf {A} .}

Solution space

[edit]

If(Φ1,A1){\displaystyle (\Phi _{1},{\mathbf {A} _{1}})} is a Helmholtz decomposition ofF{\displaystyle \mathbf {F} }, then(Φ2,A2){\displaystyle (\Phi _{2},{\mathbf {A} _{2}})} is another decomposition if, and only if,

Φ1Φ2=λ{\displaystyle \Phi _{1}-\Phi _{2}=\lambda \quad } andA1A2=Aλ+φ,{\displaystyle \quad \mathbf {A} _{1}-\mathbf {A} _{2}={\mathbf {A} }_{\lambda }+\nabla \varphi ,}
where

Proof: Setλ=Φ2Φ1{\displaystyle \lambda =\Phi _{2}-\Phi _{1}} andB=A2A1{\displaystyle {\mathbf {B} =A_{2}-A_{1}}}. According to the definitionof the Helmholtz decomposition, the condition is equivalent to

λ+×B=0{\displaystyle -\nabla \lambda +\nabla \times \mathbf {B} =0}.

Taking the divergence of each member of this equation yields2λ=0{\displaystyle \nabla ^{2}\lambda =0}, henceλ{\displaystyle \lambda } is harmonic.

Conversely, given any harmonic functionλ{\displaystyle \lambda },λ{\displaystyle \nabla \lambda } is solenoidal since

(λ)=2λ=0.{\displaystyle \nabla \cdot (\nabla \lambda )=\nabla ^{2}\lambda =0.}

Thus, according to the above section, there exists a vector fieldAλ{\displaystyle {\mathbf {A} }_{\lambda }} such thatλ=×Aλ{\displaystyle \nabla \lambda =\nabla \times {\mathbf {A} }_{\lambda }}.

IfAλ{\displaystyle {\mathbf {A} '}_{\lambda }} is another such vector field,thenC=AλAλ{\displaystyle \mathbf {C} ={\mathbf {A} }_{\lambda }-{\mathbf {A} '}_{\lambda }} fulfills×C=0{\displaystyle \nabla \times {\mathbf {C} }=0}, henceC=φ{\displaystyle C=\nabla \varphi }for some scalar fieldφ{\displaystyle \varphi }.

Fields with prescribed divergence and curl

[edit]

The term "Helmholtz theorem" can also refer to the following. LetC be asolenoidal vector field andd a scalar field onR3 which are sufficiently smooth and which vanish faster than1/r2 at infinity. Then there exists a vector fieldF such that

F=d and ×F=C;{\displaystyle \nabla \cdot \mathbf {F} =d\quad {\text{ and }}\quad \nabla \times \mathbf {F} =\mathbf {C} ;}

if additionally the vector fieldF vanishes asr → ∞, thenF is unique.[18]

In other words, a vector field can be constructed with both a specified divergence and a specified curl, and if it also vanishes at infinity, it is uniquely specified by its divergence and curl. This theorem is of great importance inelectrostatics, sinceMaxwell's equations for the electric and magnetic fields in the static case are of exactly this type.[18] The proof is by a construction generalizing the one given above: we set

F=(G(d))×(G(C)),{\displaystyle \mathbf {F} =\nabla ({\mathcal {G}}(d))-\nabla \times ({\mathcal {G}}(\mathbf {C} )),}

whereG{\displaystyle {\mathcal {G}}} represents theNewtonian potential operator. (When acting on a vector field, such as∇ ×F, it is defined to act on each component.)

Weak formulation

[edit]

The Helmholtz decomposition can be generalized by reducing the regularity assumptions (the need for the existence of strong derivatives). SupposeΩ is a bounded, simply-connected,Lipschitz domain. Everysquare-integrable vector fieldu ∈ (L2(Ω))3 has anorthogonal decomposition:[19][20][21]

u=φ+×A{\displaystyle \mathbf {u} =\nabla \varphi +\nabla \times \mathbf {A} }

whereφ is in theSobolev spaceH1(Ω) of square-integrable functions onΩ whose partial derivatives defined in thedistribution sense are square integrable, andAH(curl, Ω), the Sobolev space of vector fields consisting of square integrable vector fields with square integrable curl.

For a slightly smoother vector fielduH(curl, Ω), a similar decomposition holds:

u=φ+v{\displaystyle \mathbf {u} =\nabla \varphi +\mathbf {v} }

whereφH1(Ω),v ∈ (H1(Ω))d.

Derivation from the Fourier transform

[edit]

Note that in the theorem stated here, we have imposed the condition that ifF{\displaystyle \mathbf {F} } is not defined on a bounded domain, thenF{\displaystyle \mathbf {F} } shall decay faster than1/r{\displaystyle 1/r}. Thus, theFourier transform ofF{\displaystyle \mathbf {F} }, denoted asG{\displaystyle \mathbf {G} }, is guaranteed to exist. We apply the conventionF(r)=G(k)eikrdVk{\displaystyle \mathbf {F} (\mathbf {r} )=\iiint \mathbf {G} (\mathbf {k} )e^{i\mathbf {k} \cdot \mathbf {r} }dV_{k}}

The Fourier transform of a scalar field is a scalar field, and the Fourier transform of a vector field is a vector field of same dimension.

Now consider the following scalar and vector fields:GΦ(k)=ikG(k)k2GA(k)=ik×G(k)k2Φ(r)=GΦ(k)eikrdVkA(r)=GA(k)eikrdVk{\displaystyle {\begin{aligned}G_{\Phi }(\mathbf {k} )&=i{\frac {\mathbf {k} \cdot \mathbf {G} (\mathbf {k} )}{\|\mathbf {k} \|^{2}}}\\\mathbf {G} _{\mathbf {A} }(\mathbf {k} )&=i{\frac {\mathbf {k} \times \mathbf {G} (\mathbf {k} )}{\|\mathbf {k} \|^{2}}}\\[8pt]\Phi (\mathbf {r} )&=\iiint G_{\Phi }(\mathbf {k} )e^{i\mathbf {k} \cdot \mathbf {r} }dV_{k}\\\mathbf {A} (\mathbf {r} )&=\iiint \mathbf {G} _{\mathbf {A} }(\mathbf {k} )e^{i\mathbf {k} \cdot \mathbf {r} }dV_{k}\end{aligned}}}

Hence

G(k)=ikGΦ(k)+ik×GA(k)F(r)=ikGΦ(k)eikrdVk+ik×GA(k)eikrdVk=Φ(r)+×A(r){\displaystyle {\begin{aligned}\mathbf {G} (\mathbf {k} )&=-i\mathbf {k} G_{\Phi }(\mathbf {k} )+i\mathbf {k} \times \mathbf {G} _{\mathbf {A} }(\mathbf {k} )\\[6pt]\mathbf {F} (\mathbf {r} )&=-\iiint i\mathbf {k} G_{\Phi }(\mathbf {k} )e^{i\mathbf {k} \cdot \mathbf {r} }dV_{k}+\iiint i\mathbf {k} \times \mathbf {G} _{\mathbf {A} }(\mathbf {k} )e^{i\mathbf {k} \cdot \mathbf {r} }dV_{k}\\&=-\nabla \Phi (\mathbf {r} )+\nabla \times \mathbf {A} (\mathbf {r} )\end{aligned}}}

Longitudinal and transverse fields

[edit]

A terminology often used in physics refers to the curl-free component of a vector field as thelongitudinal component and the divergence-free component as thetransverse component.[22] This terminology comes from the following construction: Compute the three-dimensionalFourier transformF^{\displaystyle {\hat {\mathbf {F} }}} of the vector fieldF{\displaystyle \mathbf {F} }. Then decompose this field, at each pointk, into two components, one of which points longitudinally, i.e. parallel tok, the other of which points in the transverse direction, i.e. perpendicular tok. So far, we have

F^(k)=F^t(k)+F^l(k){\displaystyle {\hat {\mathbf {F} }}(\mathbf {k} )={\hat {\mathbf {F} }}_{t}(\mathbf {k} )+{\hat {\mathbf {F} }}_{l}(\mathbf {k} )}kF^t(k)=0.{\displaystyle \mathbf {k} \cdot {\hat {\mathbf {F} }}_{t}(\mathbf {k} )=0.}k×F^l(k)=0.{\displaystyle \mathbf {k} \times {\hat {\mathbf {F} }}_{l}(\mathbf {k} )=\mathbf {0} .}

Now we apply an inverse Fourier transform to each of these components. Using properties of Fourier transforms, we derive:

F(r)=Ft(r)+Fl(r){\displaystyle \mathbf {F} (\mathbf {r} )=\mathbf {F} _{t}(\mathbf {r} )+\mathbf {F} _{l}(\mathbf {r} )}Ft(r)=0{\displaystyle \nabla \cdot \mathbf {F} _{t}(\mathbf {r} )=0}×Fl(r)=0{\displaystyle \nabla \times \mathbf {F} _{l}(\mathbf {r} )=\mathbf {0} }

Since×(Φ)=0{\displaystyle \nabla \times (\nabla \Phi )=0} and(×A)=0{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0},

we can get

Ft=×A=14π×V×F|rr|dV{\displaystyle \mathbf {F} _{t}=\nabla \times \mathbf {A} ={\frac {1}{4\pi }}\nabla \times \int _{V}{\frac {\nabla '\times \mathbf {F} }{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'}Fl=Φ=14πVF|rr|dV{\displaystyle \mathbf {F} _{l}=-\nabla \Phi =-{\frac {1}{4\pi }}\nabla \int _{V}{\frac {\nabla '\cdot \mathbf {F} }{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'}

so this is indeed the Helmholtz decomposition.[23]

Generalization to arbitrary dimensions

[edit]

Informally speaking, inRd{\displaystyle \mathbb {R} ^{d}}, the Helmholtz decomposition can be expressed byF=Φ+R{\displaystyle \mathbf {F} =-\nabla \Phi +\mathbf {R} } whereΦ{\displaystyle \Phi } is any scalar function that solves the Poisson equation2Φ=f{\displaystyle -\nabla ^{2}\Phi =f}, wheref=F{\displaystyle f=\nabla \cdot \mathbf {F} } is the divergence of the vector fieldF{\displaystyle \mathbf {F} } inRd{\displaystyle \mathbb {R} ^{d}}, andR=F+Φ{\displaystyle \mathbf {R} =\mathbf {F} +\nabla \Phi } is divergence free:R=0{\displaystyle \nabla \cdot \mathbf {R} =0}. Thus the existence of Helmholtz decomposition a consequence of the existence of the solution of the Poisson equation2Φ=f{\displaystyle -\nabla ^{2}\Phi =f}.

Matrix approach

[edit]

The generalization tod{\displaystyle d} dimensions cannot be done with a vector potential, since the rotation operator and thecross product are defined (as vectors) only in three dimensions.

LetF{\displaystyle \mathbf {F} } be a vector field inRd{\displaystyle \mathbb {R} ^{d}} which decays faster than|r|δ{\displaystyle |\mathbf {r} |^{-\delta }} for|r|{\displaystyle |\mathbf {r} |\to \infty } andδ>2{\displaystyle \delta >2}.

The scalar potential is defined similar to the three dimensional case as:Φ(r)=Rddiv(F(r))K(r,r)dV=RdiFiri(r)K(r,r)dV,{\displaystyle \Phi (\mathbf {r} )=-\int _{\mathbb {R} ^{d}}\operatorname {div} (\mathbf {F} (\mathbf {r} '))K(\mathbf {r} ,\mathbf {r} ')\mathrm {d} V'=-\int _{\mathbb {R} ^{d}}\sum _{i}{\frac {\partial F_{i}}{\partial r_{i}}}(\mathbf {r} ')K(\mathbf {r} ,\mathbf {r} ')\mathrm {d} V',}where as the integration kernelK(r,r){\displaystyle K(\mathbf {r} ,\mathbf {r} ')} is again thefundamental solution ofLaplace's equation, but in d-dimensional space:K(r,r)={12πlog|rr|d=2,1d(2d)Vd|rr|2dotherwise,{\displaystyle K(\mathbf {r} ,\mathbf {r} ')={\begin{cases}{\frac {1}{2\pi }}\log {|\mathbf {r} -\mathbf {r} '|}&d=2,\\{\frac {1}{d(2-d)V_{d}}}|\mathbf {r} -\mathbf {r} '|^{2-d}&{\text{otherwise}},\end{cases}}}withVd=πd2/Γ(d2+1){\displaystyle V_{d}=\pi ^{\frac {d}{2}}/\Gamma {\big (}{\tfrac {d}{2}}+1{\big )}} the volume of the d-dimensionalunit balls andΓ(r){\displaystyle \Gamma (\mathbf {r} )} thegamma function.

Ford=3{\displaystyle d=3},Vd{\displaystyle V_{d}} is just equal to4π3{\displaystyle {\frac {4\pi }{3}}}, yielding the same prefactor as above.The rotational potential is anantisymmetric matrix with the elements:Aij(r)=Rd(Fixj(r)Fjxi(r))K(r,r)dV.{\displaystyle A_{ij}(\mathbf {r} )=\int _{\mathbb {R} ^{d}}\left({\frac {\partial F_{i}}{\partial x_{j}}}(\mathbf {r} ')-{\frac {\partial F_{j}}{\partial x_{i}}}(\mathbf {r} ')\right)K(\mathbf {r} ,\mathbf {r} ')\mathrm {d} V'.}Above the diagonal are(d2){\displaystyle \textstyle {\binom {d}{2}}} entries which occur again mirrored at the diagonal, but with a negative sign.In the three-dimensional case, the matrix elements just correspond to the components of the vector potentialA=[A1,A2,A3]=[A23,A31,A12]{\displaystyle \mathbf {A} =[A_{1},A_{2},A_{3}]=[A_{23},A_{31},A_{12}]}.However, such a matrix potential can be written as a vector only in the three-dimensional case, because(d2)=d{\displaystyle \textstyle {\binom {d}{2}}=d} is valid only ford=3{\displaystyle d=3}.

As in the three-dimensional case, the gradient field is defined asG(r)=Φ(r).{\displaystyle \mathbf {G} (\mathbf {r} )=-\nabla \Phi (\mathbf {r} ).}The rotational field, on the other hand, is defined in the general case as the row divergence of the matrix:R(r)=[krkAik(r);1id].{\displaystyle \mathbf {R} (\mathbf {r} )=\left[\sum \nolimits _{k}\partial _{r_{k}}A_{ik}(\mathbf {r} );{1\leq i\leq d}\right].}In three-dimensional space, this is equivalent to the rotation of the vector potential.[8][24]

Tensor approach

[edit]

In ad{\displaystyle d}-dimensional vector space withd3{\displaystyle d\neq 3},14π|rr|{\textstyle -{\frac {1}{4\pi \left|\mathbf {r} -\mathbf {r} '\right|}}} can be replaced by the appropriateGreen's function for the Laplacian, defined by2G(r,r)=rμrμG(r,r)=δd(rr){\displaystyle \nabla ^{2}G(\mathbf {r} ,\mathbf {r} ')={\frac {\partial }{\partial r_{\mu }}}{\frac {\partial }{\partial r_{\mu }}}G(\mathbf {r} ,\mathbf {r} ')=\delta ^{d}(\mathbf {r} -\mathbf {r} ')}whereEinstein summation convention is used for the indexμ{\displaystyle \mu }. For example,G(r,r)=12πln|rr|{\textstyle G(\mathbf {r} ,\mathbf {r} ')={\frac {1}{2\pi }}\ln \left|\mathbf {r} -\mathbf {r} '\right|} in 2D.

Following the same steps as above, we can writeFμ(r)=VFμ(r)rμrμG(r,r)ddr=δμνδρσVFν(r)rρrσG(r,r)ddr{\displaystyle F_{\mu }(\mathbf {r} )=\int _{V}F_{\mu }(\mathbf {r} '){\frac {\partial }{\partial r_{\mu }}}{\frac {\partial }{\partial r_{\mu }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '=\delta _{\mu \nu }\delta _{\rho \sigma }\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\rho }}}{\frac {\partial }{\partial r_{\sigma }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '}whereδμν{\displaystyle \delta _{\mu \nu }} is theKronecker delta (and the summation convention is again used). In place of the definition of the vector Laplacian used above, we now make use of an identity for theLevi-Civita symbolε{\displaystyle \varepsilon },εαμρεανσ=(d2)!(δμνδρσδμσδνρ){\displaystyle \varepsilon _{\alpha \mu \rho }\varepsilon _{\alpha \nu \sigma }=(d-2)!(\delta _{\mu \nu }\delta _{\rho \sigma }-\delta _{\mu \sigma }\delta _{\nu \rho })}which is valid ind2{\displaystyle d\geq 2} dimensions, whereα{\displaystyle \alpha } is a(d2){\displaystyle (d-2)}-componentmulti-index. This givesFμ(r)=δμσδνρVFν(r)rρrσG(r,r)ddr+1(d2)!εαμρεανσVFν(r)rρrσG(r,r)ddr{\displaystyle F_{\mu }(\mathbf {r} )=\delta _{\mu \sigma }\delta _{\nu \rho }\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\rho }}}{\frac {\partial }{\partial r_{\sigma }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '+{\frac {1}{(d-2)!}}\varepsilon _{\alpha \mu \rho }\varepsilon _{\alpha \nu \sigma }\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\rho }}}{\frac {\partial }{\partial r_{\sigma }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '}

We can therefore writeFμ(r)=rμΦ(r)+εμραrρAα(r){\displaystyle F_{\mu }(\mathbf {r} )=-{\frac {\partial }{\partial r_{\mu }}}\Phi (\mathbf {r} )+\varepsilon _{\mu \rho \alpha }{\frac {\partial }{\partial r_{\rho }}}A_{\alpha }(\mathbf {r} )}whereΦ(r)=VFν(r)rνG(r,r)ddrAα=1(d2)!εανσVFν(r)rσG(r,r)ddr{\displaystyle {\begin{aligned}\Phi (\mathbf {r} )&=-\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\nu }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '\\A_{\alpha }&={\frac {1}{(d-2)!}}\varepsilon _{\alpha \nu \sigma }\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\sigma }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '\end{aligned}}}Note that the vector potential is replaced by a rank-(d2){\displaystyle (d-2)} tensor ind{\displaystyle d} dimensions.

BecauseG(r,r){\displaystyle G(\mathbf {r} ,\mathbf {r} ')} is a function of onlyrr{\displaystyle \mathbf {r} -\mathbf {r} '}, one can replacerμrμ{\displaystyle {\frac {\partial }{\partial r_{\mu }}}\rightarrow -{\frac {\partial }{\partial r'_{\mu }}}}, givingΦ(r)=VFν(r)rνG(r,r)ddrAα=1(d2)!εανσVFν(r)rσG(r,r)ddr{\displaystyle {\begin{aligned}\Phi (\mathbf {r} )&=\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r'_{\nu }}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '\\A_{\alpha }&=-{\frac {1}{(d-2)!}}\varepsilon _{\alpha \nu \sigma }\int _{V}F_{\nu }(\mathbf {r} '){\frac {\partial }{\partial r_{\sigma }'}}G(\mathbf {r} ,\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '\end{aligned}}}Integration by parts can then be used to giveΦ(r)=VG(r,r)rνFν(r)ddr+SG(r,r)Fν(r)n^νdd1rAα=1(d2)!εανσVG(r,r)rσFν(r)ddr1(d2)!εανσSG(r,r)Fν(r)n^σdd1r{\displaystyle {\begin{aligned}\Phi (\mathbf {r} )&=-\int _{V}G(\mathbf {r} ,\mathbf {r} '){\frac {\partial }{\partial r'_{\nu }}}F_{\nu }(\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '+\oint _{S}G(\mathbf {r} ,\mathbf {r} ')F_{\nu }(\mathbf {r} '){\hat {n}}'_{\nu }\,\mathrm {d} ^{d-1}\mathbf {r} '\\A_{\alpha }&={\frac {1}{(d-2)!}}\varepsilon _{\alpha \nu \sigma }\int _{V}G(\mathbf {r} ,\mathbf {r} '){\frac {\partial }{\partial r_{\sigma }'}}F_{\nu }(\mathbf {r} ')\,\mathrm {d} ^{d}\mathbf {r} '-{\frac {1}{(d-2)!}}\varepsilon _{\alpha \nu \sigma }\oint _{S}G(\mathbf {r} ,\mathbf {r} ')F_{\nu }(\mathbf {r} '){\hat {n}}'_{\sigma }\,\mathrm {d} ^{d-1}\mathbf {r} '\end{aligned}}}whereS=V{\displaystyle S=\partial V} is the boundary ofV{\displaystyle V}. These expressions are analogous to those given above forthree-dimensional space.

For a further generalization to manifolds, see the discussion ofHodge decompositionbelow.

Differential forms

[edit]

TheHodge decomposition is closely related to the Helmholtz decomposition,[25] generalizing from vector fields onR3 todifferential forms on aRiemannian manifoldM. Most formulations of the Hodge decomposition requireM to becompact.[26] Since this is not true ofR3, the Hodge decomposition theorem is not strictly a generalization of the Helmholtz theorem. However, the compactness restriction in the usual formulation of the Hodge decomposition can be replaced by suitable decay assumptions at infinity on the differential forms involved, giving a proper generalization of the Helmholtz theorem.

Extensions to fields not decaying at infinity

[edit]

Most textbooks only deal with vector fields decaying faster than|r|δ{\displaystyle |\mathbf {r} |^{-\delta }} withδ>1{\displaystyle \delta >1} at infinity.[16][13][27] However,Otto Blumenthal showed in 1905 that an adapted integration kernel can be used to integrate fields decaying faster than|r|δ{\displaystyle |\mathbf {r} |^{-\delta }} withδ>0{\displaystyle \delta >0}, which is substantially less strict.To achieve this, the kernelK(r,r){\displaystyle K(\mathbf {r} ,\mathbf {r} ')} in the convolution integrals has to be replaced byK(r,r)=K(r,r)K(0,r){\displaystyle K'(\mathbf {r} ,\mathbf {r} ')=K(\mathbf {r} ,\mathbf {r} ')-K(0,\mathbf {r} ')}.[28]With even more complex integration kernels, solutions can be found even for divergent functions that need not grow faster than polynomial.[12][13][24][29]

For allanalytic vector fields that need not go to zero even at infinity, methods based onpartial integration and theCauchy formula for repeated integration[30] can be used to compute closed-form solutions of the rotation and scalar potentials, as in the case ofmultivariate polynomial,sine,cosine, andexponential functions.[8]

Uniqueness of the solution

[edit]

In general, the Helmholtz decomposition is not uniquely defined.Aharmonic functionH(r){\displaystyle H(\mathbf {r} )} is a function that satisfiesΔH(r)=0{\displaystyle \Delta H(\mathbf {r} )=0}.By addingH(r){\displaystyle H(\mathbf {r} )} to the scalar potentialΦ(r){\displaystyle \Phi (\mathbf {r} )}, a different Helmholtz decomposition can be obtained:

G(r)=(Φ(r)+H(r))=G(r)+H(r),R(r)=R(r)H(r).{\displaystyle {\begin{aligned}\mathbf {G} '(\mathbf {r} )&=\nabla (\Phi (\mathbf {r} )+H(\mathbf {r} ))=\mathbf {G} (\mathbf {r} )+\nabla H(\mathbf {r} ),\\\mathbf {R} '(\mathbf {r} )&=\mathbf {R} (\mathbf {r} )-\nabla H(\mathbf {r} ).\end{aligned}}}

For vector fieldsF{\displaystyle \mathbf {F} }, decaying at infinity, it is a plausible choice that scalar and rotation potentials also decay at infinity. BecauseH(r)=0{\displaystyle H(\mathbf {r} )=0} is the only harmonic function with this property, which follows fromLiouville's theorem, this guarantees the uniqueness of the gradient and rotation fields.[31]

This uniqueness does not apply to the potentials: In the three-dimensional case, the scalar and vector potential jointly have four components, whereas the vector field has only three. The vector field is invariant to gauge transformations and the choice of appropriate potentials known asgauge fixing is the subject ofgauge theory. Important examples from physics are theLorenz gauge condition and theCoulomb gauge. An alternative is to use thepoloidal–toroidal decomposition.

Applications

[edit]

Electrodynamics

[edit]

The Helmholtz theorem is of particular interest inelectrodynamics, since it can be used to writeMaxwell's equations in the potential image and solve them more easily. The Helmholtz decomposition can be used to prove that, givenelectric current density andcharge density, theelectric field and themagnetic flux density can be determined. They are unique if the densities vanish at infinity and one assumes the same for the potentials.[16]

Fluid dynamics

[edit]

Influid dynamics, the Helmholtz projection plays an important role, especially for the solvability theory of theNavier-Stokes equations. If the Helmholtz projection is applied to the linearized incompressible Navier-Stokes equations, theStokes equation is obtained. This depends only on the velocity of the particles in the flow, but no longer on the static pressure, allowing the equation to be reduced to one unknown. However, both equations, the Stokes and linearized equations, are equivalent. The operatorPΔ{\displaystyle P\Delta } is called theStokes operator.[32]

Dynamical systems theory

[edit]

In the theory ofdynamical systems, Helmholtz decomposition can be used to determine "quasipotentials" as well as to computeLyapunov functions in some cases.[33][34][35]

For some dynamical systems such as theLorenz system (Edward N. Lorenz, 1963[36]), a simplified model foratmosphericconvection, aclosed-form expression of the Helmholtz decomposition can be obtained:r˙=F(r)=[a(r2r1),r1(br3)r2,r1r2cr3].{\displaystyle {\dot {\mathbf {r} }}=\mathbf {F} (\mathbf {r} )={\big [}a(r_{2}-r_{1}),r_{1}(b-r_{3})-r_{2},r_{1}r_{2}-cr_{3}{\big ]}.}The Helmholtz decomposition ofF(r){\displaystyle \mathbf {F} (\mathbf {r} )}, with the scalar potentialΦ(r)=a2r12+12r22+c2r32{\displaystyle \Phi (\mathbf {r} )={\tfrac {a}{2}}r_{1}^{2}+{\tfrac {1}{2}}r_{2}^{2}+{\tfrac {c}{2}}r_{3}^{2}} is given as:

G(r)=[ar1,r2,cr3],{\displaystyle \mathbf {G} (\mathbf {r} )={\big [}-ar_{1},-r_{2},-cr_{3}{\big ]},}R(r)=[+ar2,br1r1r3,r1r2].{\displaystyle \mathbf {R} (\mathbf {r} )={\big [}+ar_{2},br_{1}-r_{1}r_{3},r_{1}r_{2}{\big ]}.}

The quadratic scalar potential provides motion in the direction of the coordinate origin, which is responsible for the stablefix point for some parameter range. For other parameters, the rotation field ensures that astrange attractor is created, causing the model to exhibit abutterfly effect.[8][37]

Medical Imaging

[edit]

Inmagnetic resonance elastography, a variant of MR imaging where mechanical waves are used to probe the viscoelasticity of organs, the Helmholtz decomposition is sometimes used to separate the measured displacement fields into its shear component (divergence-free) and its compression component (curl-free).[38] In this way, the complex shear modulus can be calculated without contributions from compression waves.

Computer animation and robotics

[edit]

The Helmholtz decomposition is also used in the field of computer engineering. This includes robotics, image reconstruction but also computer animation, where the decomposition is used for realistic visualization of fluids or vector fields.[15][39]

See also

[edit]

Notes

[edit]
  1. ^Daniel Alexander Murray:An Elementary Course in the Integral Calculus. American Book Company, 1898. p. 8.
  2. ^J. W. Gibbs,Edwin Bidwell Wilson:Vector Analysis. 1901, p. 237, link fromInternet Archive.
  3. ^Oliver Heaviside:Electromagnetic theory. Volume 1, "The Electrician" printing and publishing company, limited, 1893.
  4. ^Wesley Stoker Barker Woolhouse:Elements of the differential calculus. Weale, 1854.
  5. ^William Woolsey Johnson:An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. John Wiley & Sons, 1881.
    See also:Method of Fluxions.
  6. ^James Byrnie Shaw:Vector Calculus: With Applications to Physics. D. Van Nostrand, 1922, p. 205.
    See also:Green's theorem.
  7. ^Joseph EdwardsA Treatise on the Integral Calculus. Volume 2. Chelsea Publishing Company, 1922.
  8. ^abcdefGlötzl, Erhard; Richters, Oliver (2023). "Helmholtz decomposition and potential functions for n-dimensional analytic vector fields".Journal of Mathematical Analysis and Applications.525 (2) 127138.arXiv:2102.09556v3.doi:10.1016/j.jmaa.2023.127138..Mathematica worksheet atdoi:10.5281/zenodo.7512798.
  9. ^Gabriel Stokes, George (1849). "On the Dynamical Theory of Diffraction".Transactions of theCambridge Philosophical Society.9:1–62.doi:10.1017/cbo9780511702259.015. see pp. 9–10.
  10. ^von Helmholtz, Hermann (1858)."Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen".Journal für die reine und angewandte Mathematik.55:25–55.doi:10.1515/crll.1858.55.25. On page 38, the components of the fluid's velocity (uvw) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (LMN).
  11. ^abcdKustepeli, Alp (2016). "On the Helmholtz Theorem and Its Generalization for Multi-Layers".Electromagnetics.36 (3):135–148.doi:10.1080/02726343.2016.1149755.
  12. ^abTon Tran-Cong 1993 "On Helmholtz's Decomposition Theorem and Poissons's Equation with an Infinite DomainQuarterly of Applied Mathematics 51.1, pp. 23–35JSTOR 43637902.
  13. ^abcPetrascheck, D.; Folk, R. (2017). "Helmholtz decomposition theorem and Blumenthal's extension by regularization".Condensed Matter Physics.20 (1) 13002.arXiv:1704.02287.Bibcode:2017CMPh...2013002P.doi:10.5488/CMP.20.13002.
  14. ^abSprössig, Wolfgang (2009). "On Helmholtz decompositions and their generalizations – An overview".Mathematical Methods in the Applied Sciences.33 (4):374–383.doi:10.1002/mma.1212.
  15. ^abcBhatia, Harsh; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer-Timo (2013). "The Helmholtz-Hodge Decomposition – A Survey".IEEE Transactions on Visualization and Computer Graphics.19 (8):1386–1404.Bibcode:2013ITVCG..19.1386B.doi:10.1109/tvcg.2012.316.PMID 23744268.
  16. ^abcPetrascheck, Dietmar (2015). "The Helmholtz decomposition revisited".European Journal of Physics.37 (1) 015201.doi:10.1088/0143-0807/37/1/015201.
  17. ^"Helmholtz' Theorem"(PDF). University of Vermont. Archived fromthe original(PDF) on 2012-08-13. Retrieved2011-03-11.
  18. ^abcDavid J. Griffiths:Introduction to Electrodynamics. Prentice-Hall, 1999, p. 556.
  19. ^Amrouche, Cherif;Bernardi, Christine;Dauge, Monique;Girault, Vivette (1998). "Vector potentials in three dimensional non-smooth domains".Mathematical Methods in the Applied Sciences.21 (9):823–864.Bibcode:1998MMAS...21..823A.doi:10.1002/(sici)1099-1476(199806)21:9<823::aid-mma976>3.0.co;2-b.
  20. ^R. Dautray and J.-L. Lions.Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
  21. ^V. Girault, P.A. Raviart:Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.
  22. ^Stewart, A. M. (2011). "Longitudinal and transverse components of a vector field".Sri Lankan Journal of Physics.12:33–42.arXiv:0801.0335.doi:10.4038/sljp.v12i0.3504.
  23. ^Robert Littlejohn:The Classical Electromagnetic Field Hamiltonian. Online lecture notes, berkeley.edu.
  24. ^abErhard Glötzl, Oliver Richters:Helmholtz Decomposition and Rotation Potentials in n-dimensional Cartesian Coordinates. 2020,arXiv:2012.13157.
  25. ^Frank W. Warner:The Hodge Theorem. In:Foundations of Differentiable Manifolds and Lie Groups. (= Graduate Texts in Mathematics 94). Springer, New York 1983,doi:10.1007/978-1-4757-1799-0_6.
  26. ^Cantarella, Jason; DeTurck, Dennis; Gluck, Herman (2002). "Vector Calculus and the Topology of Domains in 3-Space".The American Mathematical Monthly.109 (5):409–442.doi:10.2307/2695643.JSTOR 2695643.
  27. ^Gregory, R. Douglas (1996). "Helmholtz's Theorem when the domain is Infinite and when the field has singular points".The Quarterly Journal of Mechanics and Applied Mathematics.49 (3):439–450.doi:10.1093/qjmam/49.3.439.
  28. ^Blumenthal, Otto (1905). "Über die Zerlegung unendlicher Vektorfelder".Mathematische Annalen.61 (2):235–250.doi:10.1007/BF01457564.
  29. ^Gurtin, Morton E. (1962). "On Helmholtz's theorem and the completeness of the Papkovich-Neuber stress functions for infinite domains".Archive for Rational Mechanics and Analysis.9 (1):225–233.Bibcode:1962ArRMA...9..225G.doi:10.1007/BF00253346.
  30. ^Cauchy, Augustin-Louis (1823). "Trente-Cinquième Leçon".Résumé des leçons données à l'École royale polytechnique sur le calcul infinitésimal (in French). Paris: Imprimerie Royale. pp. 133–140.
  31. ^Sheldon Axler, Paul Bourdon, Wade Ramey "Bounded Harmonic FunctionsHarmonic Function Theory (= Graduate Texts in Mathematics 137). Springer, New York 1992, pp. 31–44doi:10.1007/0-387-21527-1_2.
  32. ^Alexandre J. Chorin, Jerrold E. MarsdenA Mathematical Introduction to Fluid Mechanics (= Texts in Applied Mathematics 4). Springer US, New York 1990doi:10.1007/978-1-4684-0364-0.
  33. ^Suda, Tomoharu (2019). "Construction of Lyapunov functions using Helmholtz–Hodge decomposition".Discrete & Continuous Dynamical Systems – A.39 (5):2437–2454.arXiv:1901.05794.doi:10.3934/dcds.2019103.
  34. ^Suda, Tomoharu (2020). "Application of Helmholtz–Hodge decomposition to the study of certain vector fields".Journal of Physics A: Mathematical and Theoretical.53 (37): 375703.arXiv:1911.10382.Bibcode:2020JPhA...53K5703S.doi:10.1088/1751-8121/aba657.
  35. ^Xu Zhou, Joseph; Aliyu, M. D. S.; Aurell, Erik; Huang, Sui (2012)."Quasi-potential landscape in complex multi-stable systems".Journal of the Royal Society Interface.9 (77):3539–3553.Bibcode:2012JRSI....9.3539Z.doi:10.1098/rsif.2012.0434.PMC 3481575.PMID 22933187.
  36. ^Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow".Journal of the Atmospheric Sciences.20 (2):130–141.Bibcode:1963JAtS...20..130L.doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  37. ^Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe:Strange Attractors: The Locus of Chaos. In:Chaos and Fractals. Springer, New York, pp. 655–768.doi:10.1007/978-1-4757-4740-9_13.
  38. ^Manduca, Armando (2021)."MR elastography: Principles, guidelines, and terminology".Magnetic Resonance in Medicine.85 (5):2377–2390.doi:10.1002/mrm.28627.PMC 8495610.PMID 33296103.
  39. ^Bhatia, Hersh; Pascucci, Valerio; Bremer, Peer-Timo (2014). "The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis".IEEE Transactions on Visualization and Computer Graphics.20 (11):1566–1578.Bibcode:2014ITVCG..20.1566B.doi:10.1109/TVCG.2014.2312012.PMID 26355335.

References

[edit]
  • George B. Arfken and Hans J. Weber,Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
  • George B. Arfken and Hans J. Weber,Mathematical Methods for Physicists – International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101
  • Rutherford Aris,Vectors, tensors, and the basic equations of fluid mechanics, Prentice-Hall (1962),OCLC 299650765, pp. 70–72
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Helmholtz_decomposition&oldid=1332701281"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp