Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Heinz mean

From Wikipedia, the free encyclopedia
Mean in mathematics

In mathematics, theHeinz mean (named afterE. Heinz[1]) of two non-negativereal numbersA andB, was defined by Bhatia[2] as:

Hx(A,B)=AxB1x+A1xBx2,{\displaystyle \operatorname {H} _{x}(A,B)={\frac {A^{x}B^{1-x}+A^{1-x}B^{x}}{2}},}

with 0 ≤ x ≤ 1/2.

For different values ofx, this Heinz mean interpolates between thearithmetic (x = 0) andgeometric (x = 1/2) means such that for 0 < x < 1/2:

AB=H12(A,B)<Hx(A,B)<H0(A,B)=A+B2.{\displaystyle {\sqrt {AB}}=\operatorname {H} _{\frac {1}{2}}(A,B)<\operatorname {H} _{x}(A,B)<\operatorname {H} _{0}(A,B)={\frac {A+B}{2}}.}

The Heinz means appear naturally when symmetrizingα{\textstyle \alpha }-divergences.[3]

It may also be defined in the same way forpositive semidefinite matrices, and satisfies a similar interpolation formula.[4][5]

See also

[edit]

References

[edit]
  1. ^E. Heinz (1951), "Beiträge zur Störungstheorie der Spektralzerlegung",Math. Ann.,123, pp. 415–438.
  2. ^Bhatia, R. (2006), "Interpolating the arithmetic-geometric mean inequality and its operator version",Linear Algebra and Its Applications,413 (2–3):355–363,doi:10.1016/j.laa.2005.03.005.
  3. ^Nielsen, Frank; Nock, Richard; Amari, Shun-ichi (2014), "On Clustering Histograms with k-Means by Using Mixed α-Divergences",Entropy,16 (6):3273–3301,Bibcode:2014Entrp..16.3273N,doi:10.3390/e16063273,hdl:1885/98885.
  4. ^Bhatia, R.;Davis, C. (1993), "More matrix forms of the arithmetic-geometric mean inequality",SIAM Journal on Matrix Analysis and Applications,14 (1):132–136,doi:10.1137/0614012.
  5. ^Audenaert, Koenraad M.R. (2007), "A singular value inequality for Heinz means",Linear Algebra and Its Applications,422 (1):279–283,arXiv:math/0609130,doi:10.1016/j.laa.2006.10.006,S2CID 15032884.
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics


Stub icon

Thisapplied mathematics–related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Heinz_mean&oldid=1240081242"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp