Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Heavy-tailed distribution

From Wikipedia, the free encyclopedia
Probability distribution
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(May 2020) (Learn how and when to remove this message)
Heavy-tailed distributions decrease slower

Inprobability theory,heavy-tailed distributions areprobability distributions whose tails are not exponentially bounded:[1] that is, they have heavier tails than theexponential distribution. Roughly speaking, “heavy-tailed” means the distribution decreases more slowly than an exponential distribution, so extreme values are more likely. In many applications it is the right tail of the distribution that is of interest, but a distribution may have a heavy left tail, or both tails may be heavy.

There are three important subclasses of heavy-tailed distributions: thefat-tailed distributions, thelong-tailed distributions, and thesubexponential distributions. In practice, all commonly used heavy-tailed distributions belong to the subexponential class, introduced byJozef Teugels.[2]

There is still some discrepancy over the use of the termheavy-tailed. There are two other definitions in use. Some authors use the term to refer to those distributions which do not have all their powermoments finite; and some others to those distributions that do not have a finitevariance. The definition given in this article is the most general in use, and includes all distributions encompassed by the alternative definitions, as well as those distributions such aslog-normal that possess all their power moments, yet which are generally considered to be heavy-tailed. (Occasionally, heavy-tailed is used for any distribution that has heavier tails than the normal distribution.)

Definitions

[edit]

Definition of heavy-tailed distribution

[edit]

The distribution of arandom variableX withdistribution functionF is said to have a heavy (right) tail if themoment generating function ofX,MX(t), is infinite for allt > 0.[3]

That means

etxdF(x)=for all t>0.{\displaystyle \int _{-\infty }^{\infty }e^{tx}\,dF(x)=\infty \quad {\mbox{for all }}t>0.}[4]


This is also written in terms of the tail distribution function

F¯(x)Pr[X>x]{\displaystyle {\overline {F}}(x)\equiv \Pr[X>x]\,}

as

limxetxF¯(x)=for all t>0.{\displaystyle \lim _{x\to \infty }e^{tx}{\overline {F}}(x)=\infty \quad {\mbox{for all }}t>0.\,}

Definition of long-tailed distribution

[edit]

The distribution of arandom variableX withdistribution functionF is said to have a long right tail[1] if for allt > 0,

limxPr[X>x+tX>x]=1,{\displaystyle \lim _{x\to \infty }\Pr[X>x+t\mid X>x]=1,\,}

or equivalently

F¯(x+t)F¯(x)as x.{\displaystyle {\overline {F}}(x+t)\sim {\overline {F}}(x)\quad {\mbox{as }}x\to \infty .\,}

This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.

All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.

Subexponential distributions

[edit]

Subexponentiality is defined in terms ofconvolutions of probability distributions. For two independent, identically distributedrandom variablesX1,X2{\displaystyle X_{1},X_{2}} with a common distribution functionF{\displaystyle F}, the convolution ofF{\displaystyle F} with itself, writtenF2{\displaystyle F^{*2}} and called the convolution square, is defined usingLebesgue–Stieltjes integration by:

Pr[X1+X2x]=F2(x)=0xF(xy)dF(y),{\displaystyle \Pr[X_{1}+X_{2}\leq x]=F^{*2}(x)=\int _{0}^{x}F(x-y)\,dF(y),}

and then-fold convolutionFn{\displaystyle F^{*n}} is defined inductively by the rule:

Fn(x)=0xF(xy)dFn1(y).{\displaystyle F^{*n}(x)=\int _{0}^{x}F(x-y)\,dF^{*n-1}(y).}

The tail distribution functionF¯{\displaystyle {\overline {F}}} is defined asF¯(x)=1F(x){\displaystyle {\overline {F}}(x)=1-F(x)}.

A distributionF{\displaystyle F} on the positive half-line is subexponential[1][5][2] if

F2¯(x)2F¯(x)as x.{\displaystyle {\overline {F^{*2}}}(x)\sim 2{\overline {F}}(x)\quad {\mbox{as }}x\to \infty .}

This implies[6] that, for anyn1{\displaystyle n\geq 1},

Fn¯(x)nF¯(x)as x.{\displaystyle {\overline {F^{*n}}}(x)\sim n{\overline {F}}(x)\quad {\mbox{as }}x\to \infty .}

The probabilistic interpretation[6] of this is that, for a sum ofn{\displaystyle n}independentrandom variablesX1,,Xn{\displaystyle X_{1},\ldots ,X_{n}} with common distributionF{\displaystyle F},

Pr[X1++Xn>x]Pr[max(X1,,Xn)>x]as x.{\displaystyle \Pr[X_{1}+\cdots +X_{n}>x]\sim \Pr[\max(X_{1},\ldots ,X_{n})>x]\quad {\text{as }}x\to \infty .}

This is often known as the principle of the single big jump[7] or catastrophe principle.[8]

A distributionF{\displaystyle F} on the whole real line is subexponential if the distributionFI([0,)){\displaystyle FI([0,\infty ))} is.[9] HereI([0,)){\displaystyle I([0,\infty ))} is theindicator function of the positive half-line. Alternatively, a random variableX{\displaystyle X} supported on the real line is subexponential if and only ifX+=max(0,X){\displaystyle X^{+}=\max(0,X)} is subexponential.

All subexponential distributions are long-tailed, but examples can be constructed of long-tailed distributions that are not subexponential.

Common heavy-tailed distributions

[edit]

All commonly used heavy-tailed distributions are subexponential.[6]

Those that are one-tailed include:

Those that are two-tailed include:


Relationship to fat-tailed distributions

[edit]

Afat-tailed distribution is a distribution for which the probability density function, for large x, goes to zero as a powerxa{\displaystyle x^{-a}}. Since such a power is always bounded below by the probability density function of an exponential distribution, fat-tailed distributions are always heavy-tailed. Some distributions, however, have a tail which goes to zero slower than anexponential function (meaning they are heavy-tailed), but faster than a power (meaning they are not fat-tailed). An example is thelog-normal distribution[contradictory]. Many other heavy-tailed distributions such as thelog-logistic andPareto distribution are, however, also fat-tailed.

Estimating the tail-index

[edit]

There are parametric[6] and non-parametric[13] approaches to the problem of the tail-index estimation.[when defined as?]

To estimate the tail-index using the parametric approach, some authors employGEV distribution orPareto distribution; they may apply the maximum-likelihood estimator (MLE).

Pickand's tail-index estimator

[edit]

With(Xn,n1){\displaystyle (X_{n},n\geq 1)} a random sequence of independent and same density functionFD(H(ξ)){\displaystyle F\in D(H(\xi ))}, the Maximum Attraction Domain[14] of the generalized extreme value densityH{\displaystyle H}, whereξR{\displaystyle \xi \in \mathbb {R} }. Iflimnk(n)={\displaystyle \lim _{n\to \infty }k(n)=\infty } andlimnk(n)n=0{\displaystyle \lim _{n\to \infty }{\frac {k(n)}{n}}=0}, then thePickands tail-index estimation is[6][14]

ξ(k(n),n)Pickands=1ln2ln(X(nk(n)+1,n)X(n2k(n)+1,n)X(n2k(n)+1,n)X(n4k(n)+1,n)),{\displaystyle \xi _{(k(n),n)}^{\text{Pickands}}={\frac {1}{\ln 2}}\ln \left({\frac {X_{(n-k(n)+1,n)}-X_{(n-2k(n)+1,n)}}{X_{(n-2k(n)+1,n)}-X_{(n-4k(n)+1,n)}}}\right),}

whereX(nk(n)+1,n)=max(Xnk(n)+1,,Xn){\displaystyle X_{(n-k(n)+1,n)}=\max \left(X_{n-k(n)+1},\ldots ,X_{n}\right)}. This estimator converges in probability toξ{\displaystyle \xi }.

Hill's tail-index estimator

[edit]

Let(Xt,t1){\displaystyle (X_{t},t\geq 1)} be a sequence of independent and identically distributed random variables with distribution functionFD(H(ξ)){\displaystyle F\in D(H(\xi ))}, the maximum domain of attraction of thegeneralized extreme value distributionH{\displaystyle H}, whereξR{\displaystyle \xi \in \mathbb {R} }. The sample path isXt:1tn{\displaystyle {X_{t}:1\leq t\leq n}} wheren{\displaystyle n} is the sample size. If{k(n)}{\displaystyle \{k(n)\}} is an intermediate order sequence, i.e.k(n){1,,n1},{\displaystyle k(n)\in \{1,\ldots ,n-1\},},k(n){\displaystyle k(n)\to \infty } andk(n)/n0{\displaystyle k(n)/n\to 0}, then the Hill tail-index estimator is[15]

ξ(k(n),n)Hill=(1k(n)i=nk(n)+1nln(X(i,n))ln(X(nk(n)+1,n)))1,{\displaystyle \xi _{(k(n),n)}^{\text{Hill}}=\left({\frac {1}{k(n)}}\sum _{i=n-k(n)+1}^{n}\ln(X_{(i,n)})-\ln(X_{(n-k(n)+1,n)})\right)^{-1},}

whereX(i,n){\displaystyle X_{(i,n)}} is thei{\displaystyle i}-thorder statistic ofX1,,Xn{\displaystyle X_{1},\dots ,X_{n}}.This estimator converges in probability toξ{\displaystyle \xi }, and is asymptotically normal providedk(n){\displaystyle k(n)\to \infty } is restricted based on a higher order regular variation property[16] .[17] Consistency and asymptotic normality extend to a large class of dependent and heterogeneous sequences,[18][19] irrespective of whetherXt{\displaystyle X_{t}} is observed, or a computed residual or filtered data from a large class of models and estimators, including mis-specified models and models with errors that are dependent.[20][21][22] Note that both Pickand's and Hill's tail-index estimators commonly make use of logarithm of the order statistics.[23]

Ratio estimator of the tail-index

[edit]

Theratio estimator (RE-estimator) of the tail-index was introduced by Goldie and Smith.[24] It is constructed similarly to Hill's estimator but uses a non-random "tuning parameter".

A comparison of Hill-type and RE-type estimators can be found in Novak.[13]

Software

[edit]

Estimation of heavy-tailed density

[edit]

Nonparametric approaches to estimate heavy- and superheavy-tailed probability density functions were given in Markovich.[26] These are approaches based on variable bandwidth and long-tailed kernel estimators; on the preliminary data transform to a new random variable at finite or infinite intervals, which is more convenient for the estimation and then inverse transform of the obtained density estimate; and "piecing-together approach" which provides a certain parametric model for the tail of the density and a non-parametric model to approximate the mode of the density. Nonparametric estimators require an appropriate selection of tuning (smoothing) parameters like a bandwidth of kernel estimators and the bin width of the histogram. The well known data-driven methods of such selection are a cross-validation and its modifications, methods based on the minimization of the mean squared error (MSE) and its asymptotic and their upper bounds.[27] A discrepancy method which uses well-known nonparametric statistics like Kolmogorov-Smirnov's, von Mises and Anderson-Darling's ones as a metric in the space of distribution functions (dfs) and quantiles of the later statistics as a known uncertainty or a discrepancy value can be found in.[26] Bootstrap is another tool to find smoothing parameters using approximations of unknown MSE by different schemes of re-samples selection, see e.g.[28]

See also

[edit]

References

[edit]
  1. ^abcAsmussen, S. R. (2003). "Steady-State Properties of GI/G/1".Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 266–301.doi:10.1007/0-387-21525-5_10.ISBN 978-0-387-00211-8.
  2. ^abTeugels, Jozef L. (1975)."The Class of Subexponential Distributions".Annals of Probability.3 (6).University of Louvain.doi:10.1214/aop/1176996225. RetrievedApril 7, 2019.
  3. ^Rolski, Schmidli, Schmidt, Teugels,Stochastic Processes for Insurance and Finance, 1999
  4. ^S. Foss, D. Korshunov, S. Zachary,An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Science & Business Media, 21 May 2013
  5. ^Chistyakov, V. P. (1964)."A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes".ResearchGate. RetrievedApril 7, 2019.
  6. ^abcdeEmbrechts P.; Klueppelberg C.; Mikosch T. (1997).Modelling extremal events for insurance and finance. Stochastic Modelling and Applied Probability. Vol. 33. Berlin: Springer.doi:10.1007/978-3-642-33483-2.ISBN 978-3-642-08242-9.
  7. ^Foss, S.; Konstantopoulos, T.; Zachary, S. (2007)."Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments"(PDF).Journal of Theoretical Probability.20 (3): 581.arXiv:math/0509605.CiteSeerX 10.1.1.210.1699.doi:10.1007/s10959-007-0081-2.S2CID 3047753.
  8. ^Wierman, Adam (January 9, 2014)."Catastrophes, Conspiracies, and Subexponential Distributions (Part III)".Rigor + Relevance blog. RSRG, Caltech. RetrievedJanuary 9, 2014.
  9. ^Willekens, E. (1986). "Subexponentiality on the real line".Technical Report. K.U. Leuven.
  10. ^Falk, M., Hüsler, J. & Reiss, R. (2010).Laws of Small Numbers: Extremes and Rare Events. Springer. p. 80.ISBN 978-3-0348-0008-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^Alves, M.I.F., de Haan, L. & Neves, C. (March 10, 2006)."Statistical inference for heavy and super-heavy tailed distributions"(PDF). Archived fromthe original(PDF) on June 23, 2007. RetrievedNovember 1, 2011.{{cite web}}: CS1 maint: multiple names: authors list (link)
  12. ^John P. Nolan (2009)."Stable Distributions: Models for Heavy Tailed Data"(PDF). Archived fromthe original(PDF) on 2011-07-17. Retrieved2009-02-21.
  13. ^abNovak S.Y. (2011).Extreme value methods with applications to finance. London: CRC.ISBN 978-1-43983-574-6.
  14. ^abPickands III, James (Jan 1975)."Statistical Inference Using Extreme Order Statistics".The Annals of Statistics.3 (1):119–131.doi:10.1214/aos/1176343003.JSTOR 2958083.
  15. ^Hill B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Stat., v. 3, 1163–1174.
  16. ^Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.
  17. ^Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.
  18. ^Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.
  19. ^Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.
  20. ^Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.
  21. ^Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.
  22. ^Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.
  23. ^Lee, Seyoon; Kim, Joseph H. T. (2019). "Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory".Communications in Statistics - Theory and Methods.48 (8):2014–2038.arXiv:1708.01686.doi:10.1080/03610926.2018.1441418.S2CID 88514574.
  24. ^Goldie C.M., Smith R.L. (1987) Slow variation with remainder: theory and applications. Quart. J. Math. Oxford, v. 38, 45–71.
  25. ^Crovella, M. E.; Taqqu, M. S. (1999)."Estimating the Heavy Tail Index from Scaling Properties".Methodology and Computing in Applied Probability.1:55–79.doi:10.1023/A:1010012224103.S2CID 8917289. Archived fromthe original on 2007-02-06. Retrieved2015-09-03.
  26. ^abMarkovich N.M. (2007).Nonparametric Analysis of Univariate Heavy-Tailed data: Research and Practice. Chitester: Wiley.ISBN 978-0-470-72359-3.
  27. ^Wand M.P., Jones M.C. (1995).Kernel smoothing. New York: Chapman and Hall.ISBN 978-0412552700.
  28. ^Hall P. (1992).The Bootstrap and Edgeworth Expansion. Springer.ISBN 9780387945088.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Heavy-tailed_distribution&oldid=1314440526"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp