Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Heat shock factor

From Wikipedia, the free encyclopedia
Transcription factor
Protein family
HSF-type DNA-binding
Structure of the dimeric DNA binding domain of the yeast heat shock factor (cyan and green) bound to DNA (brown) based onPDB:3HTS​.
Identifiers
SymbolHSF_DNA-bind
PfamPF00447
InterProIPR000232
PROSITEPDOC00381
SCOP21hks /SCOPe /SUPFAM
Available protein structures:
Pfam  structures /ECOD  
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
PDB1FBQ​,1FBS​,1FBU​,1FYK​,1FYL​,1FYM​,1HKS​,1HKT​,2HTS​,3HSF​,3HTS
Protein family
Vertebrate heat shock transcription factor
Identifiers
SymbolVert_HS_TF
PfamPF06546
InterProIPR010542
Available protein structures:
Pfam  structures /ECOD  
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary

Inmolecular biology,heat shock factors (HSF), are thetranscription factors that regulate the expression of theheat shock proteins.[1][2] A typical example is the heat shock factor ofDrosophila melanogaster.[3]

Function

[edit]

Heat shock factors (HSF) are transcriptional activators of heat shock genes.[3] These activators bind specifically to Heat Shock sequence Elements (HSE) throughout the genome[4] whose consensus-sequence is a tandem array of three oppositely oriented "AGAAN" motifs or a degenerate version thereof. Under non-stressed conditions, Drosophila HSF is a nuclear-localized unbound monomer, whereas heat shock activation results intrimerization and binding to the HSE.[5] The Heat Shock sequence Element is highly conserved from yeast to humans.[6]

Heat shock factor 1 (HSF-1) is the major regulator of heat shock protein transcription ineukaryotes. In the absence of cellular stress, HSF-1 is inhibited by association with heat shock proteins and is therefore not active. Cellular stresses, such as increased temperature, can cause proteins in the cell to misfold. Heat shock proteins bind to the misfolded proteins and dissociate from HSF-1. This allows HSF1 to form trimers and translocate to thecell nucleus and activate transcription.[7] Its function is not only critical to overcome the proteotoxic effects of thermal stress, but also needed for proper animal development and the overall survival of cancer cells.[8][9]

Structure

[edit]

Each HSF monomer contains oneC-terminal and threeN-terminalleucine zipper repeats.[10] Point mutations in these regions result in disruption of cellular localisation, rendering the protein constitutively nuclear in humans.[5] Two sequences flanking the N-terminal zippers fit the consensus of a bi-partitenuclear localization signal (NLS). Interaction between the N- and C-terminal zippers may result in a structure that masks the NLS sequences: following activation of HSF, these may then be unmasked, resulting in relocalisation of the protein to the nucleus.[10] The DNA-binding component of HSF lies to the N-terminus of the first NLS region, and is referred to as the HSF domain.

Isoforms

[edit]

Humans express the following heat shock factors:

geneprotein
HSF1heat shock transcription factor 1
HSF2heat shock transcription factor 2
HSF2BPheat shock transcription factor 2 binding protein
HSF4heat shock transcription factor 4
HSF5heat shock transcription factor family member 5
HSFX1heat shock transcription factor family, X linked 1
HSFX2heat shock transcription factor family, X linked 2
HSFY1heat shock transcription factor, Y-linked 1
HSFY2heat shock transcription factor, Y-linked 2

See also

[edit]

References

[edit]
  1. ^Sorger PK (May 1991). "Heat shock factor and the heat shock response".Cell.65 (3):363–6.doi:10.1016/0092-8674(91)90452-5.PMID 2018972.S2CID 5169812.
  2. ^Morimoto RI (March 1993). "Cells in stress: transcriptional activation of heat shock genes".Science.259 (5100):1409–10.Bibcode:1993Sci...259.1409M.doi:10.1126/science.8451637.PMID 8451637.
  3. ^abClos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (November 1990). "Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation".Cell.63 (5):1085–97.doi:10.1016/0092-8674(90)90511-C.PMID 2257625.S2CID 205020185.
  4. ^Guertin MJ, Lis JT (September 2010)."Chromatin landscape dictates HSF binding to target DNA elements".PLOS Genet.6 (9) e1001114.doi:10.1371/journal.pgen.1001114.PMC 2936546.PMID 20844575.
  5. ^abRabindran SK, Giorgi G, Clos J, Wu C (August 1991)."Molecular cloning and expression of a human heat shock factor, HSF1".Proc. Natl. Acad. Sci. U.S.A.88 (16):6906–10.Bibcode:1991PNAS...88.6906R.doi:10.1073/pnas.88.16.6906.PMC 52202.PMID 1871105.
  6. ^Guertin MJ, Petesch SJ, Zobeck KL, Min IM, Lis JT (2010)."Drosophila heat shock system as a general model to investigate transcriptional regulation".Cold Spring Harb. Symp. Quant. Biol.75:1–9.doi:10.1101/sqb.2010.75.039.PMC 5967404.PMID 21467139.
  7. ^Prahlad V, Morimoto RI (February 2009)."Integrating the stress response: lessons for neurodegenerative diseases from C. elegans".Trends Cell Biol.19 (2):52–61.doi:10.1016/j.tcb.2008.11.002.PMC 4843516.PMID 19112021.
  8. ^Salamanca HH, Fuda N, Shi H, Lis JT (August 2011)."An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster".Nucleic Acids Res.39 (15):6729–40.doi:10.1093/nar/gkr206.PMC 3159435.PMID 21576228.
  9. ^Salamanca HH, Antonyak MA, Cerione RA, Shi H, Lis JT (2014)."Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer".PLOS ONE.9 (5) e96330.Bibcode:2014PLoSO...996330S.doi:10.1371/journal.pone.0096330.PMC 4011729.PMID 24800749.
  10. ^abSchuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (August 1991)."Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans".Proc. Natl. Acad. Sci. U.S.A.88 (16):6911–5.Bibcode:1991PNAS...88.6911S.doi:10.1073/pnas.88.16.6911.PMC 52203.PMID 1871106.
This article incorporates text from the public domainPfam andInterPro:IPR000232
(1) Basic domains
(1.1) Basicleucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3)bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2)Zinc finger DNA-binding domains
(2.1)Nuclear receptor(Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3.1)Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3)Fork head /winged helix
(3.4)Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4)β-Scaffold factors with minor groove contacts
(4.1)Rel homology region
(4.2)STAT
(4.3) p53-like
(4.4)MADS box
(4.6)TATA-binding proteins
(4.7)High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3)Pocket domain
(0.5)AP-2/EREBP-related factors
(0.6) Miscellaneous
Retrieved from "https://en.wikipedia.org/w/index.php?title=Heat_shock_factor&oldid=1315180438"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp