Fundamental solution to the heat equation, given boundary values
In themathematical study ofheat conduction anddiffusion , aheat kernel is thefundamental solution to theheat equation on a specified domain with appropriateboundary conditions . It is also one of the main tools in the study of thespectrum of theLaplace operator , and is thus of some auxiliary importance throughoutmathematical physics . The heat kernel represents the evolution oftemperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at timet = 0 .
Fundamental solution of the one-dimensional heat equation. Red: time course ofΦ ( x , t ) {\displaystyle \Phi (x,t)} . Blue: time courses ofΦ ( x 0 , t ) {\displaystyle \Phi (x_{0},t)} for two selected points.Interactive version. The most well-known heat kernel is the heat kernel ofd -dimensionalEuclidean space R d , which has the form of a time-varyingGaussian function ,K ( t , x , y ) = 1 ( 4 π t ) d / 2 exp ( − ‖ x − y ‖ 2 4 t ) , {\displaystyle K(t,x,y)={\frac {1}{\left(4\pi t\right)^{d/2}}}\exp \left(-{\frac {\left\|x-y\right\|^{2}}{4t}}\right),} which is defined for allx , y ∈ R d {\displaystyle x,y\in \mathbb {R} ^{d}} andt > 0 {\displaystyle t>0} .[ 1] This solves the heat equation{ ∂ K ∂ t ( t , x , y ) = Δ x K ( t , x , y ) lim t → 0 K ( t , x , y ) = δ ( x − y ) = δ x ( y ) {\displaystyle \left\{{\begin{aligned}&{\frac {\partial K}{\partial t}}(t,x,y)=\Delta _{x}K(t,x,y)\\&\lim _{t\to 0}K(t,x,y)=\delta (x-y)=\delta _{x}(y)\end{aligned}}\right.} for the unknown function K. Hereδ is aDirac delta distribution , and the limit is taken in the sense ofdistributions , that is, for every functionϕ in the spaceC ∞ c (R d ) ofsmooth functions with compact support , we have[ 2] lim t → 0 ∫ R d K ( t , x , y ) ϕ ( y ) d y = ϕ ( x ) . {\displaystyle \lim _{t\to 0}\int _{\mathbb {R} ^{d}}K(t,x,y)\phi (y)\,dy=\phi (x).}
On a more general domainΩ inR d , such an explicit formula is not generally possible. The next simplest cases of a disc or square involve, respectively,Bessel functions andJacobi theta functions . Nevertheless, the heat kernel still exists and issmooth fort > 0 on arbitrary domains and indeed on anyRiemannian manifold with boundary , provided the boundary is sufficiently regular. More precisely, in these more general domains, the heat kernel the solution of the initial boundary value problem{ ∂ K ∂ t ( t , x , y ) = Δ x K ( t , x , y ) for all t > 0 and x , y ∈ Ω lim t → 0 K ( t , x , y ) = δ x ( y ) for all x , y ∈ Ω K ( t , x , y ) = 0 x ∈ ∂ Ω or y ∈ ∂ Ω {\displaystyle {\begin{cases}{\frac {\partial K}{\partial t}}(t,x,y)=\Delta _{x}K(t,x,y)&{\text{for all }}t>0{\text{ and }}x,y\in \Omega \\[6pt]\lim _{t\to 0}K(t,x,y)=\delta _{x}(y)&{\text{for all }}x,y\in \Omega \\[6pt]K(t,x,y)=0&x\in \partial \Omega {\text{ or }}y\in \partial \Omega \end{cases}}}
To derive a formal expression for the heat kernel on an arbitrary domain, consider the Dirichlet problem in a connected domain (or manifold with boundary)U . Letλ n be theeigenvalues for the Dirichlet problem of theLaplacian [ 3] { Δ ϕ + λ ϕ = 0 in U , ϕ = 0 on ∂ U . {\displaystyle {\begin{cases}\Delta \phi +\lambda \phi =0&{\text{in }}U,\\\phi =0&{\text{on }}\ \partial U.\end{cases}}} Letϕ n denote the associatedeigenfunctions , normalized to be orthonormal inL 2 (U ) . The inverse Dirichlet LaplacianΔ−1 is acompact andselfadjoint operator , and so thespectral theorem implies that the eigenvalues ofΔ satisfy0 < λ 1 ≤ λ 2 ≤ λ 3 ≤ ⋯ , λ n → ∞ . {\displaystyle 0<\lambda _{1}\leq \lambda _{2}\leq \lambda _{3}\leq \cdots ,\quad \lambda _{n}\to \infty .} The heat kernel has the following expression:K ( t , x , y ) = ∑ n = 0 ∞ e − λ n t ϕ n ( x ) ϕ n ( y ) . {\displaystyle K(t,x,y)=\sum _{n=0}^{\infty }e^{-\lambda _{n}t}\phi _{n}(x)\phi _{n}(y).} Formally differentiating the series under the sign of the summation shows that this should satisfy the heat equation. However, convergence and regularity of the series are quite delicate.
The heat kernel is also sometimes identified with the associatedintegral transform , defined for compactly supported smoothϕ byT ϕ = ∫ Ω K ( t , x , y ) ϕ ( y ) d y . {\displaystyle T\phi =\int _{\Omega }K(t,x,y)\phi (y)\,dy.} Thespectral mapping theorem gives a representation ofT in the form thesemigroup [ 4] [ 5]
T = e t Δ . {\displaystyle T=e^{t\Delta }.}
There are several geometric results on heat kernels on manifolds; say, short-time asymptotics, long-time asymptotics, and upper/lower bounds of Gaussian type.
Berline, Nicole; Getzler, E.; Vergne, Michèle (2004),Heat Kernels and Dirac Operators , Berlin, New York:Springer-Verlag Chavel, Isaac (1984),Eigenvalues in Riemannian geometry , Pure and Applied Mathematics, vol. 115, Boston, MA:Academic Press ,ISBN 978-0-12-170640-1 ,MR 0768584 Dodziuk, Jozef (1981), "Eigenvalues of the Laplacian and the Heat Equation",The American Mathematical Monthly ,88 (9):686– 695,doi :10.2307/2320674 Engel, Klaus-Jochen; Nagel, Rainer (2006),A Short Course on Operator Semigroups (PDF) , New York: Springer Science & Business Media,ISBN 978-0-387-31341-2 Evans, Lawrence C. (1998),Partial differential equations , Providence, R.I.:American Mathematical Society ,ISBN 978-0-8218-0772-9 Gilkey, Peter B. (1994),Invariance Theory, the Heat Equation, and the Atiyah–Singer Theorem ,ISBN 978-0-8493-7874-4 Grigor'yan, Alexander (2009),Heat kernel and analysis on manifolds , AMS/IP Studies in Advanced Mathematics, vol. 47, Providence, R.I.:American Mathematical Society ,ISBN 978-0-8218-4935-4 ,MR 2569498 Pinchover, Yehuda; Rubinstein, Jacob (2005-05-12),An Introduction to Partial Differential Equations , Cambridge University Press,doi :10.1017/cbo9780511801228 ,ISBN 978-0-511-80122-8
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics