Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Haze

From Wikipedia, the free encyclopedia
Dry particulates obscuring clarity of the sky
"Hazy" redirects here. For other uses, seeHaze (disambiguation) andHazy (disambiguation).
Harmattan Haze inAbuja
Haze over theMojave Desert from abrush fire inSanta Barbara, California, seen as the Sun descends on the 2016June solstice, allows the Sun to be photographed without afilter.
Haze as smoke pollution over the Mojave from fires in theInland Empire, June 2016, demonstrates the loss of contrast to theSun, and the landscape in general.
Part of aseries on
Pollution
Air pollution from a factory

Haze is traditionally anatmospheric phenomenon in which dust, smoke, and other dryparticulates suspended in air obscurevisibility and the clarity of the sky. TheWorld Meteorological Organization manual of codes includes a classification of particulates causing horizontal obscuration into categories offog,ice fog,steam fog,mist, haze,smoke,volcanic ash,dust,sand, andsnow.[1] Sources for particles that cause haze include farming (stubble burning,ploughing in dry weather), traffic, industry, windy weather,volcanic activity andwildfires.Seen from afar (e.g. an approaching airplane) and depending on the direction of view with respect to the Sun, haze may appear brownish or bluish, while mist tends to be bluish grey instead. Whereas haze often is considered a phenomenon occurring in dry air, mist formation is a phenomenon in saturated, humid air. However, haze particles may act ascondensation nuclei that leads to the subsequent vapor condensation and formation of mist droplets; such forms of haze are known as "wet haze".

In meteorological literature, the wordhaze is generally used to denote visibility-reducingaerosols of the wet type suspended in theatmosphere. Such aerosols commonly arise from complexchemical reactions that occur assulfur dioxide gases emitted duringcombustion are converted into small droplets ofsulfuric acid when exposed. The reactions are enhanced in the presence of sunlight, high relative humidity, and an absence of air flow (wind). A small component of wet-haze aerosols appear to be derived from compounds released by trees when burning, such asterpenes. For all these reasons, wet haze tends to be primarily a warm-season phenomenon. Large areas of haze covering many thousands of kilometers may be produced under extensive favorable conditions each summer.

Air pollution

[edit]
Main article:Smog

Haze often occurs when suspended dust and smoke particles accumulate in relatively dry air. When weather conditions block the dispersal of smoke and other pollutants they concentrate and form a usually low-hanging shroud that impairs visibility and may become arespiratory health threat if excessively inhaled. Industrial pollution can result in dense haze, which is known assmog.

Since 1991, haze has been a particularly acute problem in Southeast Asia. The main source of the haze has been smoke from fires occurring in Sumatra and Borneo which dispersed over a wide area. In response to the1997 Southeast Asian haze, theASEAN countries agreed on a Regional Haze Action Plan (1997) as an attempt to reduce haze. In 2002, all ASEAN countries signed theAgreement on Transboundary Haze Pollution, but the pollution is still a problem there today. Under the agreement, the ASEAN secretariat hosts a co-ordination and support unit.[2] During the2013 Southeast Asian haze, Singapore experienced a record high pollution level, with the 3-hourPollutant Standards Index reaching a record high of 401.[3]

In the United States, the Interagency Monitoring of Protected Visual Environments (IMPROVE) program was developed as a collaborative effort between the US EPA and the National Park Service in order to establish the chemical composition of haze in National Parks and establish air pollution control measures in order to restore the visibility of the air to pre-industrial levels.[4] Additionally, theClean Air Act requires that any current visibility problems be addressed and remedied, and future visibility problems be prevented, in 156 Class I Federal areas located throughout the United States. A full list of these areas is available on EPA's website.[5]

In addition to the severe health issues caused by haze from air pollution,dust storm particles, andbush fire smoke, reduction in irradiance is the most dominant impact of these sources of haze and a growing issue forphotovoltaic production as the solar industry grows.[6] Smog also lowersagricultural yield and it has been proposed that pollution controls could increase agricultural production inChina.[7] These effects are negative for both sides ofagrivoltaics (the combination of photovoltaic electricity production and food from agriculture).

International disputes

[edit]

Transboundary haze

[edit]

Haze is no longer just a confined domestic problem. It has become one of the causes of international disputes among neighboring countries. Haze can migrate to adjacent countries in the path of wind and thereby pollutes other countries as well, even if haze does not first manifest there. One of the most recent problems occur in Southeast Asia which largely affects the nations of Indonesia, Malaysia and Singapore. In2013, due to forest fires in Indonesia,Kuala Lumpur and surrounding areas became shrouded in a pall of noxious fumes dispersed from Indonesia, that brings a smell of ash and coal for more than a week, in the country's worst environmental crisis since1997.

The main sources of the haze are Indonesia's Sumatra Island, Indonesian areas of Borneo, and Riau, where farmers, plantation owners and miners have set hundreds of fires in the forests to clear land during dry weather. Winds blew most of the particulates and fumes across the narrowStrait of Malacca to Malaysia, although parts of Indonesia in the path are also affected.[8] The2015 Southeast Asian haze was another major crisis of air quality, although there were occasions such as the2006 and2019 haze which were less impactful than the three major Southeast Asian haze of 1997, 2013 and 2015.

Obscuration

[edit]
The sun viewed directly through a thick haze of atmospheric dust inMeknes, Morocco

Haze causes issues in the area of terrestrial photography and imaging, where the penetration of large amounts of dense atmosphere may be necessary to image distant subjects. This results in the visual effect of a loss of contrast in the subject, due to the effect of lightscattering andreflection through the hazeparticles. For these reasons, sunrise and sunset colors and possibly the sun itself appear subdued on hazy days, and stars may be obscured by haze at night. In some cases, attenuation by haze is so great that, toward sunset, the sun disappears altogether before even reaching the horizon.[9]

Haze can be defined as an aerial form of theTyndall effect therefore unlike other atmospheric effects such as cloud,mist andfog, haze is spectrally selective in accordance to theelectromagnetic spectrum: shorter (blue) wavelengths are scattered more, and longer (red/infrared) wavelengths are scattered less. For this reason, many super-telephoto lenses often incorporate yellowlight filters or coatings to enhance image contrast.[10] Infrared (IR) imaging may also be used to penetrate haze over long distances, with a combination of IR-pass optical filters and IR-sensitive detectors at the intended destination.

See also

[edit]

Notes

[edit]
  1. ^"WMO Manual on Codes"(PDF). Archived fromthe original(PDF) on 2018-12-22. Retrieved2017-10-19.
  2. ^ASEAN action hazeonlineArchived 2005-02-05 at theWayback Machine
  3. ^"Singapore haze hits record high from Indonesia fires". BBC News. 21 June 2013. Retrieved19 January 2014.
  4. ^"Improve – Interagency Monitoring of Protected Visual Environments".vista.cira.colostate.edu.
  5. ^"Federal Class 1 Areas". Archived fromthe original on April 12, 2006.
  6. ^Sadat, Seyyed Ali; Hoex, Bram; Pearce, Joshua M. (2022)."A Review of the Effects of Haze on Solar Photovoltaic Performance".Renewable and Sustainable Energy Reviews.167 112796.Bibcode:2022RSERv.16712796S.doi:10.1016/j.rser.2022.112796.S2CID 251430613.
  7. ^Chameides, W. L.; Yu, H.;Liu, S. C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C. S.; Saylor, R. D.; Luo, C.; Huang, Y.; Steiner, A.; Giorgi, F. (1999-11-23)."Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?".Proceedings of the National Academy of Sciences.96 (24):13626–13633.Bibcode:1999PNAS...9613626C.doi:10.1073/pnas.96.24.13626.ISSN 0027-8424.PMC 24115.PMID 10570123.
  8. ^"Hazardous haze shrouds Kuala Lumpur".NBC News. 11 August 2005.
  9. ^Figure 1. "The setting sun dimmed by dense haze over State College, Pennsylvania on 16 September 1992"."Haze over the Central and Eastern United States". The National Weather Digest. March 1996. RetrievedApril 26, 2011.
  10. ^"UV, Skylight and Haze Filters".pages.mtu.edu. Retrieved2022-05-06.

External links

[edit]
Wikimedia Commons has media related toHaze.
Air
Biological
Digital
Electromagnetic
Natural
Noise
Radiation
Soil
Solid waste
Space
Visual
War
Water
Topics
Misc
Responses
Lists
Asia pollution topics
Air pollution
Notable incidents
Dust storm
Forest fires andhaze
Air radioactive
contamination
By countries
Recurrent issues
Counter-measures
Water pollution
Notable incidents
Water radioactive
contamination
Marine pollution
By countries
Aerosol terminology
Aerosol types
Aerosol terms
Aerosol measurement
Particle counters
Combination
Microscopy
Retrieved from "https://en.wikipedia.org/w/index.php?title=Haze&oldid=1322194654"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp