Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hasse–Arf theorem

From Wikipedia, the free encyclopedia
On jumps of upper numbering filtration of the Galois group of a finite Galois extension

Inmathematics, specifically inlocal class field theory, theHasse–Arf theorem is a result concerning jumps of theupper numbering filtration of theGalois group of a finiteGalois extension. A special case of it when the residue fields are finite was originally proved byHelmut Hasse,[1][2] and the general result was proved byCahit Arf.[3][4]

Statement

[edit]

Higher ramification groups

[edit]
Main article:Ramification group

The theorem deals with the upper numbered higher ramification groups of a finiteabelian extensionL/K{\displaystyle L/K}. So assumeL/K{\displaystyle L/K} is a finite Galois extension, and thatvK{\displaystyle v_{K}} is adiscrete normalised valuation ofK, whoseresidue field has characteristicp > 0, and which admits a unique extension toL, sayw. Denote byvL{\displaystyle v_{L}} the associated normalised valuationew ofL and letO{\displaystyle \scriptstyle {\mathcal {O}}} be thevaluation ring ofL undervL{\displaystyle v_{L}}. LetL/K{\displaystyle L/K} haveGalois groupG and define thes-th ramification group ofL/K{\displaystyle L/K} for any reals ≥ −1 by

Gs(L/K)={σG:vL(σaa)s+1 for all aO}.{\displaystyle G_{s}(L/K)=\{\sigma \in G\,:\,v_{L}(\sigma a-a)\geq s+1{\text{ for all }}a\in {\mathcal {O}}\}.}

So, for example,G−1 is the Galois groupG. To pass to the upper numbering one has to define the functionψL/K which in turn is the inverse of the functionηL/K defined by

ηL/K(s)=0sdx|G0:Gx|.{\displaystyle \eta _{L/K}(s)=\int _{0}^{s}{\frac {dx}{|G_{0}:G_{x}|}}.}

The upper numbering of theramification groups is then defined byGt(L/K) = Gs(L/K) wheres = ψL/K(t).

These higher ramification groupsGt(L/K) are defined for any realt ≥ −1, but sincevL is a discrete valuation, the groups will change in discrete jumps and not continuously. Thus we say thatt is a jump of the filtration {Gt(L/K) : t ≥ −1} ifGt(L/K) ≠ Gu(L/K) for anyu > t. The Hasse–Arf theorem tells us the arithmetic nature of these jumps.

Statement of the theorem

[edit]

With the above set up of an abelian extensionL/K, the theorem states that the jumps of the filtration {Gt(L/K) : t ≥ −1} are allrational integers.[4][5]

Example

[edit]

SupposeG is cyclic of orderpn{\displaystyle p^{n}},p{\displaystyle p} residue characteristic andG(i){\displaystyle G(i)} be the subgroup ofG{\displaystyle G} of orderpni{\displaystyle p^{n-i}}. The theorem says that there exist positive integersi0,i1,...,in1{\displaystyle i_{0},i_{1},...,i_{n-1}} such that

G0==Gi0=G=G0==Gi0{\displaystyle G_{0}=\cdots =G_{i_{0}}=G=G^{0}=\cdots =G^{i_{0}}}
Gi0+1==Gi0+pi1=G(1)=Gi0+1==Gi0+i1{\displaystyle G_{i_{0}+1}=\cdots =G_{i_{0}+pi_{1}}=G(1)=G^{i_{0}+1}=\cdots =G^{i_{0}+i_{1}}}
Gi0+pi1+1==Gi0+pi1+p2i2=G(2)=Gi0+i1+1{\displaystyle G_{i_{0}+pi_{1}+1}=\cdots =G_{i_{0}+pi_{1}+p^{2}i_{2}}=G(2)=G^{i_{0}+i_{1}+1}}
...
Gi0+pi1++pn1in1+1=1=Gi0++in1+1.{\displaystyle G_{i_{0}+pi_{1}+\cdots +p^{n-1}i_{n-1}+1}=1=G^{i_{0}+\cdots +i_{n-1}+1}.}[4]

Non-abelian extensions

[edit]

For non-abelian extensions the jumps in the upper filtration need not be at integers. Serre gave an example of a totally ramified extension with Galois group thequaternion groupQ8{\displaystyle Q_{8}} of order 8 with

The upper numbering then satisfies

so has a jump at the non-integral valuen=3/2{\displaystyle n=3/2}.

Notes

[edit]
  1. ^Hasse, Helmut (1930)."Führer, Diskriminante und Verzweigungskörper relativ-Abelscher Zahlkörper".J. Reine Angew. Math. (in German).162:169–184.doi:10.1515/crll.1930.162.169.MR 1581221.
  2. ^H. Hasse,Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo2 (1934), pp.477–498.
  3. ^Arf, Cahit (1939). "Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper".J. Reine Angew. Math. (in German).181:1–44.doi:10.1515/crll.1940.181.1.MR 0000018.Zbl 0021.20201.
  4. ^abcSerre (1979) IV.3, p.76
  5. ^Neukirch (1999) Theorem 8.9, p.68

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hasse–Arf_theorem&oldid=1295380830"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp