Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hammer projection

From Wikipedia, the free encyclopedia
Pseudoazimuthal equal-area map projection
Hammer projection of the world
The Hammer projection withTissot's indicatrix of deformation

TheHammer projection is an equal-areamap projection described byErnst Hammer in 1892. Using the same 2:1 elliptical outer shape as theMollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

Development

[edit]

Directly inspired by theAitoff projection, Hammer suggested the use of the equatorial form of theLambert azimuthal equal-area projection instead of Aitoff's use of theazimuthal equidistant projection:

x=laeax(λ2,φ)y=12laeay(λ2,φ){\displaystyle {\begin{aligned}x&=\operatorname {laea} _{x}\left({\frac {\lambda }{2}},\varphi \right)\\y&={\tfrac {1}{2}}\operatorname {laea} _{y}\left({\frac {\lambda }{2}},\varphi \right)\end{aligned}}}

where laeax and laeay are thex andy components of the equatorial Lambert azimuthal equal-area projection. Written out explicitly:

x=22cosφsinλ21+cosφcosλ2y=2sinφ1+cosφcosλ2{\displaystyle {\begin{aligned}x&={\frac {2{\sqrt {2}}\cos \varphi \sin {\frac {\lambda }{2}}}{\sqrt {1+\cos \varphi \cos {\frac {\lambda }{2}}}}}\\y&={\frac {{\sqrt {2}}\sin \varphi }{\sqrt {1+\cos \varphi \cos {\frac {\lambda }{2}}}}}\end{aligned}}}

The inverse is calculated with the intermediate variable

z1(14x)2(12y)2{\displaystyle z\equiv {\sqrt {1-\left({\tfrac {1}{4}}x\right)^{2}-\left({\tfrac {1}{2}}y\right)^{2}}}}

The longitude and latitudes can then be calculated by

λ=2arctanzx2(2z21)φ=arcsinzy{\displaystyle {\begin{aligned}\lambda &=2\arctan {\frac {zx}{2\left(2z^{2}-1\right)}}\\\varphi &=\arcsin zy\end{aligned}}}

whereλ is thelongitude from the central meridian andφ is thelatitude.[1][2]

Visually, the Aitoff and Hammer projections are very similar. The Hammer has seen more use because of its equal-area property. TheMollweide projection is another equal-area projection of similar aspect, though with straight parallels of latitude, unlike the Hammer's curved parallels.

Briesemeister

[edit]

William A. Briesemeister presented a variant of the Hammer in 1953. In this version, the central meridian is set to 10°E, the coordinate system is rotated to bring the 45°N parallel to the center, and the resulting map is squashed horizontally and reciprocally stretched vertically to achieve a 7:4 aspect ratio instead of the 2:1 of the Hammer. The purpose is to present the land masses more centrally and with lower distortion.[3][4]

Nordic

[edit]

Before projecting to Hammer,John Bartholomew rotated the coordinate system to bring the 45° north parallel to the center, leaving the prime meridian as the central meridian. He called this variant the "Nordic" projection.[4]

See also

[edit]

References

[edit]
  1. ^Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 130–133,ISBN 0-226-76747-7.
  2. ^Weisstein, Eric W."Hammer–Aitoff Equal-Area Projection." From MathWorld—A Wolfram Web Resource
  3. ^Briesemeister, William (April 1953)."A new oblique equal-area projection".Geographical Review.43 (2):260–261.doi:10.2307/211940. Retrieved2024-01-18.
  4. ^abSnyder, John P.;Voxland, Philip M. (1989).An Album of Map Projections. Professional Paper 1453. Denver:USGS. p. 162.ISBN 978-0160033681. Archived fromthe original on 2010-07-01. Retrieved2018-03-29.

External links

[edit]
Wikimedia Commons has media related toHammer projection.
Cylindrical
Mercator-conformal
Equal-area
Pseudocylindrical
Equal-area
Conical
Pseudoconical
Azimuthal
(planar)
General perspective
Pseudoazimuthal
Conformal
Equal-area
Bonne
Bottomley
Cylindrical
Tobler hyperelliptical
Equidistant in
some aspect
Gnomonic
Loxodromic
Retroazimuthal
(Mecca or Qibla)
Compromise
Hybrid
Perspective
Planar
Polyhedral
See also
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hammer_projection&oldid=1292663007"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp