Ahalophyte is a salt-tolerantplant that grows in soil or waters of highsalinity, coming into contact with saline water through its roots or by salt spray, such as in saline semi-deserts,mangrove swamps,marshes andsloughs, and seashores. The word derives from Ancient Greek ἅλας (halas) 'salt' and φυτόν (phyton) 'plant'. Halophytes have different anatomy, physiology and biochemistry thanglycophytes.[1] An example of a halophyte is thesalt marsh grassSpartina alterniflora (smooth cordgrass). Relatively few plant species are halophytes—perhaps only 2% of all plant species. Information about many of the earth's halophytes can be found in thehalophyte database.
The large majority of plant species areglycophytes, which are not salt-tolerant and are damaged fairly easily by high salinity.[2]
Major habitats where halophytes flourish include mangrove swamps, sand and cliff shorelines in the tropics, salt deserts and semi-deserts, theSargasso Sea,mudflats and salt marshes,kelp forests and beds,salt lakes and salt steppes of thePannonian region,wash fringes, isolated inland saline grasslands, and in places where people have brought about salination.[4]
True halophytes do not just tolerate saline water, but show optimal growth in saline water.[5]
One quantitative measure of salt tolerance (halotolerance) is the total dissolved solids in irrigation water that a plant can tolerate.Seawater typically contains 40 grams per litre (g/L) of dissolved salts (mostlysodium chloride).Beans andrice can tolerate about 1–3 g/L, and are considered glycophytes (as are mostcrop plants). At the other extreme,Salicornia bigelovii (dwarf glasswort) grows well at 70 g/L of dissolved solids, and is a promising halophyte for use as a crop.[6] Plants such as barley (Hordeum vulgare) and the date palm (Phoenix dactylifera) can tolerate about 5 g/L, and can be considered as marginal halophytes.[2]
Adaptation to saline environments by halophytes may take the form of salt tolerance or salt avoidance. Plants that avoid the effects of high salt even though they live in a saline environment may be referred to as facultative halophytes rather than 'true', or obligatory, halophytes.
For example, a short-lived plant species that completes its reproductive life cycle during periods (such as arainy season) when the salt concentration is low would be avoiding salt rather than tolerating it. Or a plant species may maintain a 'normal' internal salt concentration by excreting excess salts through its leaves, by way ofsalt glands, or by concentrating salts in salt bladders in leaves that later die and drop off.[1]
In an effort to improve agricultural production in regions where crops are exposed to salinity, research is focused on improving understanding of the various mechanisms whereby plants respond to salinity stress, so that more robust crop halophytes may be developed. Adaptive responses to salinity stress have been identified at molecular, cellular, metabolic, and physiological levels.[7]
Some halophytes are being studied for use as "3rd-generation" biofuel precursors. Halophytes such asSalicornia bigelovii can be grown in harsh environments and typically do not compete with food crops for resources, making them promising sources ofbiodiesel orbioalcohol.[6][8][9]
Halophytes likeSuaeda salsa can store salt ions andrare-earth elements absorbed from soils in their tissues.[10] Halophytes can therefore be used inPhytoremediation measures to adjust salinity levels of surrounding soils.[11] These measures aim to allowglycophytes to survive in previously uninhabitable areas through an environmentally safe, and cost effective process.[12] A higher concentration of halophyte plants in one area leads to higher salt uptake and lower soil salinity levels.[10]
Crop tolerance to seawater – Crop tolerance to seawater is the ability of an agricultural crop to withstand the high salinity induced by irrigation with seawater.Pages displaying wikidata descriptions as a fallback