Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Half-normal distribution

From Wikipedia, the free encyclopedia
Probability distribution
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Half-normal distribution" – news ·newspapers ·books ·scholar ·JSTOR
(November 2020) (Learn how and when to remove this message)
Half-normal distribution
Probability density function
Probability density function of the half-normal distribution '"`UNIQ--postMath-000000D3-QINU`"'
σ=1{\displaystyle \sigma =1}
Cumulative distribution function
Cumulative distribution function of the half-normal distribution '"`UNIQ--postMath-000000D5-QINU`"'
σ=1{\displaystyle \sigma =1}
Parametersσ>0{\displaystyle \sigma >0} — (scale)
Supportx[0,){\displaystyle x\in [0,\infty )}
PDFf(x;σ)=2σπexp(x22σ2)x>0{\displaystyle f(x;\sigma )={\frac {\sqrt {2}}{\sigma {\sqrt {\pi }}}}\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right)\quad x>0}
CDFF(x;σ)=erf(xσ2){\displaystyle F(x;\sigma )=\operatorname {erf} \left({\frac {x}{\sigma {\sqrt {2}}}}\right)}
QuantileQ(F;σ)=σ2erf1(F){\displaystyle Q(F;\sigma )=\sigma {\sqrt {2}}\operatorname {erf} ^{-1}(F)}
Meanσ2π0.797885σ{\displaystyle {\frac {\sigma {\sqrt {2}}}{\sqrt {\pi }}}\approx 0.797885\sigma }
Medianσ2erf1(1/2)0.674490σ{\displaystyle \sigma {\sqrt {2}}\operatorname {erf} ^{-1}(1/2)\approx 0.674490\sigma }
Mode0{\displaystyle 0}
Varianceσ2(12π){\displaystyle \sigma ^{2}\left(1-{\frac {2}{\pi }}\right)}
Skewness2(4π)(π2)3/20.9952717{\displaystyle {\frac {{\sqrt {2}}(4-\pi )}{(\pi -2)^{3/2}}}\approx 0.9952717}
Excess kurtosis8(π3)(π2)20.869177{\displaystyle {\frac {8(\pi -3)}{(\pi -2)^{2}}}\approx 0.869177}
Entropy12log2(2πeσ2)1{\displaystyle {\frac {1}{2}}\log _{2}\left(2\pi e\sigma ^{2}\right)-1}
MGFexp(σ2t22)erfc(σt2){\displaystyle \exp \left({\frac {\sigma ^{2}t^{2}}{2}}\right)\operatorname {erfc} \left(-{\frac {\sigma t}{\sqrt {2}}}\right)}
CFw(σt2){\displaystyle w\left({\frac {\sigma t}{\sqrt {2}}}\right)}
wherew(x){\displaystyle w(x)} is theFaddeeva function

In probability theory and statistics, thehalf-normal distribution is a special case of thefolded normal distribution.

LetX{\displaystyle X} follow an ordinarynormal distribution,N(0,σ2){\displaystyle N(0,\sigma ^{2})}. Then,Y=|X|{\displaystyle Y=|X|} follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero.

Properties

[edit]

Using theσ{\displaystyle \sigma } parametrization of the normal distribution, theprobability density function (PDF) of the half-normal is given by

fY(y;σ)=2σπexp(y22σ2)y0,{\displaystyle f_{Y}(y;\sigma )={\frac {\sqrt {2}}{\sigma {\sqrt {\pi }}}}\exp \left(-{\frac {y^{2}}{2\sigma ^{2}}}\right)\quad y\geq 0,}

whereE[Y]=μ=σ2π{\displaystyle E[Y]=\mu ={\frac {\sigma {\sqrt {2}}}{\sqrt {\pi }}}}.

Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues ifσ{\displaystyle \sigma } is near zero), obtained by settingθ=πσ2{\displaystyle \theta ={\frac {\sqrt {\pi }}{\sigma {\sqrt {2}}}}}, theprobability density function is given by

fY(y;θ)=2θπexp(y2θ2π)y0,{\displaystyle f_{Y}(y;\theta )={\frac {2\theta }{\pi }}\exp \left(-{\frac {y^{2}\theta ^{2}}{\pi }}\right)\quad y\geq 0,}

whereE[Y]=μ=1θ{\displaystyle E[Y]=\mu ={\frac {1}{\theta }}}.

Thecumulative distribution function (CDF) is given by

FY(y;σ)=0y1σ2πexp(x22σ2)dx{\displaystyle F_{Y}(y;\sigma )=\int _{0}^{y}{\frac {1}{\sigma }}{\sqrt {\frac {2}{\pi }}}\,\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right)\,dx}

Using the change-of-variablesz=x/(2σ){\displaystyle z=x/({\sqrt {2}}\sigma )}, the CDF can be written as

FY(y;σ)=2π0y/(2σ)exp(z2)dz=erf(y2σ),{\displaystyle F_{Y}(y;\sigma )={\frac {2}{\sqrt {\pi }}}\,\int _{0}^{y/({\sqrt {2}}\sigma )}\exp \left(-z^{2}\right)dz=\operatorname {erf} \left({\frac {y}{{\sqrt {2}}\sigma }}\right),}

where erf is theerror function, a standard function in many mathematical software packages.

The quantile function (or inverse CDF) is written:

Q(F;σ)=σ2erf1(F){\displaystyle Q(F;\sigma )=\sigma {\sqrt {2}}\operatorname {erf} ^{-1}(F)}

where0F1{\displaystyle 0\leq F\leq 1} anderf1{\displaystyle \operatorname {erf} ^{-1}} is theinverse error function

The expectation is then given by

E[Y]=σ2/π,{\displaystyle E[Y]=\sigma {\sqrt {2/\pi }},}

The variance is given by

var(Y)=σ2(12π).{\displaystyle \operatorname {var} (Y)=\sigma ^{2}\left(1-{\frac {2}{\pi }}\right).}

Since this is proportional to the variance σ2 ofX,σ can be seen as ascale parameter of the new distribution.

The differential entropy of the half-normal distribution is exactly one bit less the differential entropy of a zero-mean normal distribution with the same second moment about 0. This can be understood intuitively since the magnitude operator reduces information by one bit (if the probability distribution at its input is even). Alternatively, since a half-normal distribution is always positive, the one bit it would take to record whether a standard normal random variable were positive (say, a 1) or negative (say, a 0) is no longer necessary. Thus,

h(Y)=12log2(πeσ22)=12log2(2πeσ2)1.{\displaystyle h(Y)={\frac {1}{2}}\log _{2}\left({\frac {\pi e\sigma ^{2}}{2}}\right)={\frac {1}{2}}\log _{2}\left(2\pi e\sigma ^{2}\right)-1.}

Applications

[edit]

The half-normal distribution is commonly utilized as aprior probability distribution forvariance parameters inBayesian inference applications.[1][2]

Parameter estimation

[edit]

Given numbers{xi}i=1n{\displaystyle \{x_{i}\}_{i=1}^{n}} drawn from a half-normal distribution, the unknown parameterσ{\displaystyle \sigma } of that distribution can be estimated by the method ofmaximum likelihood, giving

σ^=1ni=1nxi2{\displaystyle {\hat {\sigma }}={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{2}}}}

The bias is equal to

bE[(σ^mleσ)]=σ4n{\displaystyle b\equiv \operatorname {E} {\bigg [}\;({\hat {\sigma }}_{\mathrm {mle} }-\sigma )\;{\bigg ]}=-{\frac {\sigma }{4n}}}

which yields thebias-corrected maximum likelihood estimator

σ^mle=σ^mleb^.{\displaystyle {\hat {\sigma \,}}_{\text{mle}}^{*}={\hat {\sigma \,}}_{\text{mle}}-{\hat {b\,}}.}

Related distributions

[edit]

See also

[edit]

References

[edit]
  1. ^Gelman, A. (2006), "Prior distributions for variance parameters in hierarchical models",Bayesian Analysis,1 (3):515–534,doi:10.1214/06-ba117a
  2. ^Röver, C.; Bender, R.; Dias, S.; Schmid, C.H.; Schmidli, H.; Sturtz, S.; Weber, S.; Friede, T. (2021), "On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis",Research Synthesis Methods,12 (4):448–474,arXiv:2007.08352,doi:10.1002/jrsm.1475,PMID 33486828,S2CID 220546288
  3. ^Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021)."The Modified-Half-Normal distribution: Properties and an efficient sampling scheme".Communications in Statistics - Theory and Methods.52 (5):1591–1613.doi:10.1080/03610926.2021.1934700.ISSN 0361-0926.S2CID 237919587.

Further reading

[edit]

External links

[edit]
(note that MathWorld uses the parameterθ=1σπ/2{\displaystyle \theta ={\frac {1}{\sigma }}{\sqrt {\pi /2}}}


Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Half-normal_distribution&oldid=1301988453"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp