Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Half-logistic distribution

From Wikipedia, the free encyclopedia
Concept in statistics
Half-logistic distribution
Probability density function
Probability density plots of half-logistic distribution
Cumulative distribution function
Cumulative distribution plots of half-logistic distribution
Supportk[0;){\displaystyle k\in [0;\infty )\!}
PDF2ek(1+ek)2{\displaystyle {\frac {2e^{-k}}{(1+e^{-k})^{2}}}\!}
CDF1ek1+ek{\displaystyle {\frac {1-e^{-k}}{1+e^{-k}}}\!}
Meanln(4)=1.386{\displaystyle \ln(4)=1.386\ldots }
Medianln(3)=1.0986{\displaystyle \ln(3)=1.0986\ldots }
Mode0
Varianceπ2/3(ln(4))2=1.368{\displaystyle \pi ^{2}/3-(\ln(4))^{2}=1.368\ldots }
Entropylog(e22){\displaystyle \log \left({\frac {e^{2}}{2}}\right)}

Inprobability theory andstatistics, thehalf-logistic distribution is a continuousprobability distribution—the distribution of the absolute value of arandom variable following thelogistic distribution. That is, for

X=|Y|{\displaystyle X=|Y|\!}

whereY is a logistic random variable,X is a half-logistic random variable.

Specification

[edit]

Cumulative distribution function

[edit]

Thecumulative distribution function (cdf) of the half-logistic distribution is intimately related to the cdf of the logistic distribution. Formally, ifF(k) is the cdf for the logistic distribution, thenG(k) = 2F(k) − 1 is the cdf of a half-logistic distribution. Specifically,

G(k)=1ek1+ek for k0.{\displaystyle G(k)={\frac {1-e^{-k}}{1+e^{-k}}}{\text{ for }}k\geq 0.\!}

Probability density function

[edit]

Similarly, theprobability density function (pdf) of the half-logistic distribution isg(k) = 2f(k) iff(k) is the pdf of the logistic distribution. Explicitly,

g(k)=2ek(1+ek)2 for k0.{\displaystyle g(k)={\frac {2e^{-k}}{(1+e^{-k})^{2}}}{\text{ for }}k\geq 0.\!}

References

[edit]
  • Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "23.11".Continuous univariate distributions. Vol. 2 (2nd ed.). New York: Wiley. p. 150.
  • George, Olusegun; Meenakshi Devidas (1992). "Some Related Distributions". In N. Balakrishnan (ed.).Handbook of the Logistic Distribution. New York: Marcel Dekker, Inc. pp. 232–234.ISBN 0-8247-8587-8.
  • Olapade, A.K. (2003),"On characterizations of the half-logistic distribution"(PDF),InterStat,2003 (February): 2,ISSN 1941-689X
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Half-logistic_distribution&oldid=1325364305"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp