Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

HSPA1L

From Wikipedia, the free encyclopedia
Protein-coding gene in the species Homo sapiens

HSPA1L
Available structures
PDBOrtholog search:PDBeRCSB
List of PDB id codes

3GDQ

Identifiers
AliasesHSPA1L, HSP70-1L, HSP70-HOM, HSP70T, hum70t, heat shock protein family A (Hsp70) member 1 like
External IDsOMIM:140559;MGI:96231;HomoloGene:135835;GeneCards:HSPA1L;OMA:HSPA1L - orthologs
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for HSPA1L
Genomic location for HSPA1L
Band6p21.33Start31,809,619bp[1]
End31,815,283bp[1]
Gene location (Mouse)
Chromosome 17 (mouse)
Chr.Chromosome 17 (mouse)[2]
Chromosome 17 (mouse)
Genomic location for HSPA1L
Genomic location for HSPA1L
Band17 B1|17 18.51 cMStart35,191,679bp[2]
End35,198,261bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • left testis

  • right testis

  • testicle

  • muscle of thigh

  • skeletal muscle tissue

  • gonad

  • blood

  • granulocyte

  • gastrocnemius muscle

  • ganglionic eminence
Top expressed in
  • seminiferous tubule

  • spermatid

  • soleus muscle

  • muscle of thigh

  • spermatocyte

  • tibialis anterior muscle

  • intercostal muscle

  • plantaris muscle

  • temporal muscle

  • sternocleidomastoid muscle
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3305

15482

Ensembl
ENSG00000234258
ENSG00000226704
ENSG00000236251
ENSG00000204390
ENSG00000206383

n/a

ENSMUSG00000007033

UniProt

P34931

P16627

RefSeq (mRNA)

NM_005527

NM_013558

RefSeq (protein)

NP_005518

NP_038586

Location (UCSC)Chr 6: 31.81 – 31.82 MbChr 17: 35.19 – 35.2 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Heat shock 70 kDa protein 1L is aprotein that in humans is encoded by theHSPA1Lgene on chromosome 6.[5][6][7] As a member of the heat shock protein 70 (Hsp70) family and achaperone protein, it facilitates the proper folding of newlytranslated and misfolded proteins, as well as stabilize or degrade mutant proteins.[7][8] Its functions contribute to biological processes includingsignal transduction,apoptosis, protein homeostasis, andcell growth anddifferentiation.[8][9] It has been associated with an extensive number ofcancers,neurodegenerative diseases, cellsenescence and aging, andGraft-versus-host disease.[8][9][10]

Structure

[edit]

This gene encodes a 70kDa heat shock protein and is located in themajor histocompatibility complex class III region, in a cluster with two closely related genes which also encodeisoforms of the 70kDa heat shock protein.[7] Theamino acid sequence of the encoded protein shares a 90% homology to the isoformsHSPA1A andHSPA1B.[11] As a Hsp70 protein, it has aC-terminal protein substrate-binding domain and anN-terminalATP-binding domain.[12][13][14][15] The substrate-binding domain consists of two subdomains, a two-layered β-sandwich subdomain (SBDβ) and an α-helical subdomain (SBDα), which are connected by the loop Lα,β. SBDβ contains the peptide binding pocket while SBDα serves as a lid to cover the substrate binding cleft. The ATP binding domain consists of four subdomains split into two lobes by a central ATP/ADP binding pocket.[14] The two terminal domains are linked together by a conserved region referred to as loop LL,1, which is critical forallosteric regulation. The unstructured region at the very end of the C-terminal is believed to be the docking site forco-chaperones.[14][15]

Since acDNA clone of this gene contains a 119 bp-region in the5' UTR, it is likely thatHSPA1L contains one or moreintrons in its own 5' UTR.[11]

Function

[edit]

In general, HSPA1L is widely distributed across tissues at low abundances, but in particular, it is constitutively and abundantly expressed in thetestis.[15][16]

Along with other heat shock proteins, this protein stabilizes existing proteins against aggregation and mediates the folding of newly translated proteins in thecytosol and inorganelles.[8][9] In order to properly fold non-native proteins, this protein interacts with the hydrophobic peptide segments of proteins in an ATP-controlled fashion. Though the exact mechanism still remains unclear, there are at least two alternative modes of action: kinetic partitioning and local unfolding. In kinetic partitioning, Hsp70s repetitively bind and release substrates in cycles that maintain low concentrations of freesubstrate. This effectively prevents aggregation while allowing free molecules to fold to the native state. In local unfolding, the binding and release cycles induce localized unfolding in the substrate, which helps to overcome kinetic barriers for folding to the native state. Ultimately, its role in protein folding contributes to its function in signal transduction, apoptosis, protein homeostasis, and cell growth and differentiation.[8][9]

In addition to the process of protein folding, transport and degradation, this Hsp70 member can preserve the function of mutant proteins. Nonetheless, effects of these mutations can still manifest when Hsp70 chaperones are overwhelmed during stress conditions.[8] Furthermore, this protein enhancesantigen-specific tumor immunity by facilitating more efficient antigen presentation tocytotoxic T cells.[9] Though it shares close homology to HSPA1A and HSPA1B, it is regulated differently and is not heat-inducible.[11]

Clinical significance

[edit]

The Hsp70 member proteins are important apoptotic constituents. During a normalembryologic processes, or during cell injury (such as ischemia-reperfusion injury duringheart attacks andstrokes) or during developments and processes incancer, an apoptotic cell undergoes structural changes including cell shrinkage, plasma membrane blebbing, nuclear condensation, and fragmentation of theDNA andnucleus. This is followed by fragmentation into apoptotic bodies that are quickly removed byphagocytes, thereby preventing aninflammatory response.[17] It is a mode of cell death defined by characteristic morphological, biochemical and molecular changes. It was first described as a "shrinkage necrosis", and then this term was replaced by apoptosis to emphasize its role oppositemitosis in tissue kinetics. In later stages of apoptosis the entire cell becomes fragmented, forming a number of plasma membrane-bounded apoptotic bodies which contain nuclear and or cytoplasmic elements. The ultrastructural appearance ofnecrosis is quite different, the main features being mitochondrial swelling, plasma membrane breakdown and cellular disintegration. Apoptosis occurs in manyphysiological andpathological processes. It plays an important role duringembryonal development as programmed cell death and accompanies a variety of normal involutional processes in which it serves as a mechanism to remove "unwanted" cells.

Hsp70 member proteins, including Hsp72, inhibit apoptosis by acting on thecaspase-dependent pathway and against apoptosis-inducing agents such astumor necrosis factor-α (TNFα),staurosporine, anddoxorubicin. This role leads to its involvement in many pathological processes, such as oncogenesis, neurodegeneration, and senescence. In particular, overexpression of HSP72 has been linked to the development some cancers, such ashepatocellular carcinoma,gastric cancers,colon cancers,breast cancers, andlung cancers, which led to its use as aprognosticmarker for these cancers.[9] Elevated Hsp70 levels in tumor cells may increasemalignancy and resistance to therapy by complexing, and hence, stabilizing, oncofetal proteins and products and transporting them into intracellular sites, thereby promoting tumor cell proliferation.[8][9] As a result, tumor vaccine strategies for Hsp70s have been highly successful in animal models and progressed to clinical trials.[9] Alternatively, overexpression of Hsp70 can mitigate the effects of neurodegenerative diseases, such asAlzheimer's disease,Parkinson's disease (PD),Huntington's disease, andspinocerebellar ataxias, and aging and cell senescence, as observed in centenarians subjected to heat shock challenge.[8] HSPA1L may fight against PD by co-regulating thetranslocation ofparkin to damagedmitochondria, thus facilitating their removal.[16]

HSPA1L is also involved in Graft-versus-host disease (GVHD) and has potential to serve as a diagnostic/prognostic biomarker.[10]Polymorphisms in theHSPA1L gene, especially those in the substrate binding domain, have been associated with disease.[15]

Interactions

[edit]

HSPA1L has been shown tointeract withPARK2.[16]

References

[edit]
  1. ^abcENSG00000226704, ENSG00000236251, ENSG00000204390, ENSG00000206383 GRCh38: Ensembl release 89: ENSG00000234258, ENSG00000226704, ENSG00000236251, ENSG00000204390, ENSG00000206383Ensembl, May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000007033Ensembl, May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (Aug 1998)."Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man".Journal of Biochemistry.124 (2):347–53.doi:10.1093/oxfordjournals.jbchem.a022118.PMID 9685725.
  6. ^Ishihara M, Ohno S (Nov 1997)."Genetic influences on sarcoidosis".Eye. 11.11 (2):155–61.doi:10.1038/eye.1997.44.PMID 9349405.
  7. ^abc"Entrez Gene: HSPA1L heat shock 70kDa protein 1-like".
  8. ^abcdefghMayer MP, Bukau B (Mar 2005)."Hsp70 chaperones: cellular functions and molecular mechanism".Cellular and Molecular Life Sciences.62 (6) 670:670–684.doi:10.1007/s00018-004-4464-6.PMC 2773841.PMID 15770419.
  9. ^abcdefghWang X, Wang Q, Lin H, Li S, Sun L, Yang Y (Feb 2013). "HSP72 and gp96 in gastroenterological cancers".Clinica Chimica Acta; International Journal of Clinical Chemistry.417:73–9.doi:10.1016/j.cca.2012.12.017.PMID 23266770.
  10. ^abAtarod S, Turner B, Pearce KF, Ahmed SS, Norden J, Bogunia-Kubik K, Wang XN, Collin M, Dickinson AM (Feb 2015). "Elevated level of HSPA1L mRNA correlates with graft-versus-host disease".Transplant Immunology.32 (3):188–94.doi:10.1016/j.trim.2015.02.002.PMID 25680846.
  11. ^abcIto Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (Aug 1998)."Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man".Journal of Biochemistry.124 (2):347–53.doi:10.1093/oxfordjournals.jbchem.a022118.PMID 9685725.
  12. ^Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jäättelä M, Penninger JM, Garrido C, Kroemer G (September 2001). "Heat-shock protein 70 antagonizes apoptosis-inducing factor".Nat. Cell Biol.3 (9):839–43.doi:10.1038/ncb0901-839.PMID 11533664.S2CID 21164493.
  13. ^Zhang B, Rong R, Li H, Peng X, Xiong L, Wang Y, Yu X, Mao H (2015)."Heat shock protein 72 suppresses apoptosis by increasing the stability of X-linked inhibitor of apoptosis protein in renal ischemia/reperfusion injury".Mol Med Rep.11 (3):1793–9.doi:10.3892/mmr.2014.2939.PMC 4270332.PMID 25394481.
  14. ^abcZhang P, Leu JI, Murphy ME, George DL, Marmorstein R (2014)."Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate".PLOS ONE.9 (7) e103518.Bibcode:2014PLoSO...9j3518Z.doi:10.1371/journal.pone.0103518.PMC 4110032.PMID 25058147.
  15. ^abcdWisniewska M, Karlberg T, Lehtiö L, Johansson I, Kotenyova T, Moche M, Schüler H (11 January 2010)."Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78".PLOS ONE.5 (1) e8625.Bibcode:2010PLoSO...5.8625W.doi:10.1371/journal.pone.0008625.PMC 2803158.PMID 20072699.
  16. ^abcHasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ (Dec 2013)."High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy".Nature.504 (7479):291–5.Bibcode:2013Natur.504..291H.doi:10.1038/nature12748.PMC 5841086.PMID 24270810.
  17. ^Kerr JF, Wyllie AH, Currie AR (Aug 1972)."Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics".British Journal of Cancer.26 (4):239–57.doi:10.1038/bjc.1972.33.PMC 2008650.PMID 4561027.

Further reading

[edit]

External links

[edit]
PDB gallery
  • 1hjo: HEAT-SHOCK 70KD PROTEIN 42KD ATPASE N-TERMINAL DOMAIN
    1hjo: HEAT-SHOCK 70KD PROTEIN 42KD ATPASE N-TERMINAL DOMAIN
  • 1s3x: The crystal structure of the human Hsp70 ATPase domain
    1s3x: The crystal structure of the human Hsp70 ATPase domain
  • 1xqs: Crystal structure of the HspBP1 core domain complexed with the fragment of Hsp70 ATPase domain
    1xqs: Crystal structure of the HspBP1 core domain complexed with the fragment of Hsp70 ATPase domain
Chaperones/
protein folding
Heat shock proteins/
Chaperonins
Other
Protein targeting
Ubiquitin
(ubiquitylation)
Ubiquitin-like proteins
(UBL)
SUMO protein
(SUMOylation)
  • E2 SUMO-conjugating enzyme
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=HSPA1L&oldid=1314365527"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp