Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hexokinase II

From Wikipedia, the free encyclopedia
(Redirected fromHK2)
Mammalian protein found in humans
"HK2" redirects here. For the dependency injection framework, seeGlassFish HK2.
HK2
Available structures
PDBOrtholog search:PDBeRCSB
List of PDB id codes

2NZT,5HFU,5HG1,5HEX

Identifiers
AliasesHK2, HKII, HXK2, hexokinase 2
External IDsOMIM:601125;MGI:1315197;HomoloGene:37273;GeneCards:HK2;OMA:HK2 - orthologs
Gene location (Human)
Chromosome 2 (human)
Chr.Chromosome 2 (human)[1]
Chromosome 2 (human)
Genomic location for HK2
Genomic location for HK2
Band2p12Start74,834,127bp[1]
End74,893,359bp[1]
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)[2]
Chromosome 6 (mouse)
Genomic location for HK2
Genomic location for HK2
Band6 C3|6 35.94 cMStart82,702,006bp[2]
End82,751,435bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • corpus epididymis

  • mucosa of sigmoid colon

  • body of tongue

  • cartilage tissue

  • pericardium

  • secondary oocyte

  • Skeletal muscle tissue of biceps brachii

  • mucosa of transverse colon

  • rectum

  • monocyte
Top expressed in
  • plantaris muscle

  • extensor digitorum longus muscle

  • extraocular muscle

  • neural layer of retina

  • digastric muscle

  • masseter muscle

  • temporal muscle

  • sternocleidomastoid muscle

  • tibialis anterior muscle

  • cardiac muscle tissue of left ventricle
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3099

15277

Ensembl

ENSG00000159399

ENSMUSG00000000628

UniProt

P52789

O08528

RefSeq (mRNA)

NM_000189
NM_001371525

NM_013820

RefSeq (protein)

NP_000180
NP_001358454

NP_038848

Location (UCSC)Chr 2: 74.83 – 74.89 MbChr 6: 82.7 – 82.75 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Hexokinase II, also known asHexokinase B andHK2, is anenzyme which in humans is encoded by theHK2gene on chromosome 2.[5][6]Hexokinasesphosphorylateglucose to produceglucose 6-phosphate, the first step in most glucosemetabolism pathways. Hexokinase II is the predominant hexokinase form found inskeletal muscle. Itlocalizes to theouter membrane of mitochondria. Expression of the HK2 gene isinsulin-responsive, and studies in rat suggest that it is involved in the increased rate ofglycolysis seen in rapidly growingcancer cells. [provided by RefSeq, Apr 2009][6]

Structure

[edit]

Hexokinase II is one of four homologous hexokinaseisoforms in mammalian cells.[7][8][9][10][11]

Gene

[edit]

TheHK2 gene spans approximately 50kb and consists of 18exons. There is also anHK2pseudogene integrated into a long interspersed nuclear repetitive DNA element located on the X chromosome. Though itsDNA sequence is similar to the cDNA product of the actualHK2mRNA transcript, it lacks anopen reading frame for gene expression.[10]

Protein

[edit]

This gene encodes a 100-kDa, 917-residueenzyme with highly similarN-terminal andC-terminal domains that each form half of the protein.[10][12] This high similarity, along with the existence of a 50-kDa hexokinase (HK4), suggests that the 100-kDa hexokinases originated from a 50-kDa precursor viagene duplication and tandem ligation.[10][11] BothN- andC-terminal domains possesscatalytic ability and can be inhibited by glucose 6-phosphate, though theC-terminal domain demonstrates loweraffinity forATP and is only inhibited at higher concentrations of glucose 6-phosphate.[10] Despite there being two binding sites for glucose, it is proposed that glucose binding at one site induces a conformational change which prevents a second glucose from binding the other site.[13] Meanwhile, the first 12 amino acids of the highlyhydrophobicN-terminal serve to bind the enzyme to themitochondria, while the first 18 amino acids contribute to the enzyme’s stability.[9][11]

Function

[edit]

As an isoform of hexokinase and a member of the sugar kinase family, hexokinase IIcatalyzes therate-limiting and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to glucose 6-phosphate.[11] Physiological levels of glucose 6-phosphate can regulate this process by inhibiting hexokinase II asnegative feedback, thoughinorganic phosphate (Pi) can relieve glucose 6-phosphate inhibition.[8][10][11] Pi can also directly regulate hexokinase II, and the double regulation may better suit itsanabolic functions.[8] By phosphorylating glucose, hexokinase II effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism.[10][12] Moreover, its localization and attachment to the OMM promotes the coupling of glycolysis to mitochondrialoxidative phosphorylation, which greatly enhances ATP production to meet the cell’s energy demands.[14][15] Specifically, hexokinase II bindsVDAC to trigger opening of the channel and release mitochondrial ATP to further fuel the glycolytic process.[8][15]

Another critical function for OMM-bound hexokinase II is mediation of cell survival.[8][9] Activation ofAktkinase maintains HK2-VDAC coupling, which subsequently preventscytochrome c release and apoptosis, though the exact mechanism remains to be confirmed.[8] One model proposes that hexokinase II competes with the pro-apoptotic proteinsBAX to bind VDAC, and in the absence of hexokinase II, BAX inducescytochrome c release.[8][15] In fact, there is evidence that hexokinase II restrictsBAX andBAK oligomerization and binding to the OMM. In a similar mechanism, the pro-apoptoticcreatine kinase binds and opens VDAC in the absence of hexokinase II.[8] An alternative model proposes the opposite, that hexokinase II regulates binding of the anti-apoptotic proteinBcl-Xl to VDAC.[15]

In particular, hexokinase II is ubiquitously expressed in tissues, though it is majorly found inmuscle andadipose tissue.[8][10][15] Incardiac andskeletal muscle, hexokinase II can be found bound to both the mitochondrial andsarcoplasmic membrane.[16] HK2 gene expression is regulated by a phosphatidylinositol 3-kinaselp70 S6 proteinkinase-dependent pathway and can be induced by factors such asinsulin,hypoxia, cold temperatures, and exercise.[10][17] Its inducible expression indicates its adaptive role in metabolic responses to changes in the cellular environment.[17]

Clinical significance

[edit]

Cancer

[edit]

Hexokinase II is highly expressed in severalcancers, includingbreast cancer andcolon cancer.[9][15][18] Its role in coupling ATP fromoxidative phosphorylation to the rate-limiting step of glycolysis may help drive thetumor cells’ growth.[15] Notably, inhibition of hexokinase II has demonstrably improved the effectiveness of anticancer drugs.,[18] Thus, hexokinase II stands as a promising therapeutic target, though considering its ubiquitous expression and crucial role in energy metabolism, a reduction rather than complete inhibition of its activity should be pursued.[15][18]

Non-insulin-dependent diabetes mellitus

[edit]

A study onnon-insulin-dependent diabetes mellitus (NIDDM) revealed low basal glucose 6-phosphate levels in NIDDM patients that failed to increase with the addition of insulin. One possible cause is decreased phosphorylation of glucose due to a defect in hexokinase II, which was confirmed in further experiments. However, the study could not establish any links between NIDDM and mutations in theHK2 gene, indicating that the defect may lie in hexokinase II regulation.[10]

Interactions

[edit]

HK2 is known tointeract with:

Interactive pathway map

[edit]

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

  1. ^The interactive pathway map can be edited at WikiPathways:"GlycolysisGluconeogenesis_WP534".

See also

[edit]

References

[edit]
  1. ^abcGRCh38: Ensembl release 89: ENSG00000159399Ensembl, May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000000628Ensembl, May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Lehto M, Xiang K, Stoffel M, Espinosa R, Groop LC, Le Beau MM, Bell GI (Dec 1993)."Human hexokinase II: localization of the polymorphic gene to chromosome 2".Diabetologia.36 (12):1299–302.doi:10.1007/BF00400809.PMID 8307259.
  6. ^ab"Entrez Gene: HK2 hexokinase 2".
  7. ^Murakami K, Kanno H, Tancabelic J, Fujii H (2002). "Gene expression and biological significance of hexokinase in erythroid cells".Acta Haematologica.108 (4):204–9.doi:10.1159/000065656.PMID 12432216.S2CID 23521290.
  8. ^abcdefghijOkatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N (Nov 2012). "Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase".Biochemical and Biophysical Research Communications.428 (1):197–202.doi:10.1016/j.bbrc.2012.10.041.PMID 23068103.
  9. ^abcdSchindler A, Foley E (Dec 2013). "Hexokinase 1 blocks apoptotic signals at the mitochondria".Cellular Signalling.25 (12):2685–92.doi:10.1016/j.cellsig.2013.08.035.PMID 24018046.
  10. ^abcdefghijPrintz RL, Osawa H, Ardehali H, Koch S, Granner DK (Feb 1997). "Hexokinase II gene: structure, regulation and promoter organization".Biochemical Society Transactions.25 (1):107–12.doi:10.1042/bst0250107.PMID 9056853.
  11. ^abcdeAhn KJ, Kim J, Yun M, Park JH, Lee JD (Jun 2009)."Enzymatic properties of theN- andC-terminal halves of human hexokinase II".BMB Reports.42 (6):350–5.doi:10.5483/bmbrep.2009.42.6.350.PMID 19558793.
  12. ^abAleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB (Jan 1998)."The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate".Structure.6 (1):39–50.doi:10.1016/s0969-2126(98)00006-9.PMID 9493266.
  13. ^Cárdenas, ML;Cornish-Bowden, A; Ureta, T (5 March 1998)."Evolution and regulatory role of the hexokinases".Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.1401 (3):242–64.doi:10.1016/s0167-4889(97)00150-x.PMID 9540816.
  14. ^Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (Apr 2014)."Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia".Schizophrenia Research.154 (1–3):1–13.doi:10.1016/j.schres.2014.01.028.PMC 4151500.PMID 24560881.
  15. ^abcdefghPalmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS (Sep 2009)."Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis".Molecular Cancer Research.7 (9):1438–45.doi:10.1158/1541-7786.MCR-09-0234.PMC 2746883.PMID 19723875.
  16. ^Reid, S; Masters, C (1985). "On the developmental properties and tissue interactions of hexokinase".Mechanisms of Ageing and Development.31 (2):197–212.doi:10.1016/s0047-6374(85)80030-0.PMID 4058069.S2CID 40877603.
  17. ^abWyatt, E; Wu, R; Rabeh, W; Park, HW; Ghanefar, M; Ardehali, H (3 November 2010)."Regulation and cytoprotective role of hexokinase III".PLOS ONE.5 (11): e13823.Bibcode:2010PLoSO...513823W.doi:10.1371/journal.pone.0013823.PMC 2972215.PMID 21072205.
  18. ^abcPeng Q, Zhou J, Zhou Q, Pan F, Zhong D, Liang H (2009). "Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil".Hepato-Gastroenterology.56 (90):355–60.PMID 19579598.

Further reading

[edit]

External links

[edit]

This article incorporates text from theUnited States National Library of Medicine, which is in thepublic domain.


Glycolysis
Gluconeogenesis only
tooxaloacetate:
fromlactate (Cori cycle):
fromalanine (Alanine cycle):
fromglycerol:
Regulatory
Mitochondrial proteins
Outer membrane
fatty acid degradation
tryptophan metabolism
monoamine neurotransmitter
metabolism
Intermembrane space
Inner membrane
oxidative phosphorylation
pyrimidine metabolism
mitochondrial shuttle
steroidogenesis
other
Matrix
citric acid cycle
anaplerotic reactions
urea cycle
alcohol metabolism
Other/to be sorted
Mitochondrial DNA
Complex I
Complex III
Complex IV
ATP synthase
tRNA
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hexokinase_II&oldid=1256829579"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp