Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hölder condition

From Wikipedia, the free encyclopedia
Type of continuity of a complex-valued function
This article includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this article byintroducing more precise citations.(July 2022) (Learn how and when to remove this message)

Inmathematics, a real or complex-valued functionf ond-dimensionalEuclidean space satisfies aHölder condition, or isHölder continuous, when there are real constantsC ≥ 0,α > 0, such that|f(x)f(y)|Cxyα{\displaystyle |f(x)-f(y)|\leq C\|x-y\|^{\alpha }}for allx andy in the domain off. More generally, the condition can be formulated for functions between any twometric spaces. The numberα{\displaystyle \alpha } is called theexponent of the Hölder condition. A function on an interval satisfying the condition withα > 1 isconstant (see proof below). Ifα = 1, then the function satisfies aLipschitz condition. For anyα > 0, the condition implies the function isuniformly continuous. The condition is named afterOtto Hölder.Ifα=0{\displaystyle \alpha =0}, the function is simplybounded (any two valuesf{\displaystyle f} takes are at mostC{\displaystyle C} apart).

We have the following chain of inclusions for functions defined on a closed and bounded interval[a,b] of the real line witha <b:

Continuously differentiableLipschitz continuousα{\displaystyle \alpha }-Hölder continuousuniformly continuous =continuous,

where0 <α ≤ 1.

Hölder spaces

[edit]

Hölder spaces consisting of functions satisfying a Hölder condition are basic in areas offunctional analysis relevant to solvingpartial differential equations, and indynamical systems. The Hölder spaceCk,α(Ω), whereΩ is an open subset of some Euclidean space andk ≥ 0 an integer, consists of those functions on Ω having continuousderivatives up through orderk and such that thek-th partial derivatives are Hölder continuous with exponentα, where0 <α ≤ 1. This is alocally convex topological vector space. If the Hölder coefficient|f|C0,α=supx,yΩ,xy|f(x)f(y)|xyα,{\displaystyle \left|f\right|_{C^{0,\alpha }}=\sup _{x,y\in \Omega ,x\neq y}{\frac {|f(x)-f(y)|}{\left\|x-y\right\|^{\alpha }}},}is finite, then the functionf is said to be(uniformly) Hölder continuous with exponentα inΩ. In this case, the Hölder coefficient serves as aseminorm. If the Hölder coefficient is merely bounded oncompact subsets ofΩ, then the functionf is said to belocally Hölder continuous with exponentα inΩ.

If the functionf and its derivatives up to orderk are bounded on the closure of Ω, then the Hölder spaceCk,α(Ω¯){\displaystyle C^{k,\alpha }({\overline {\Omega }})} can be assigned the normfCk,α=fCk+max|β|=k|Dβf|C0,α{\displaystyle \left\|f\right\|_{C^{k,\alpha }}=\left\|f\right\|_{C^{k}}+\max _{|\beta |=k}\left|D^{\beta }f\right|_{C^{0,\alpha }}}where β ranges overmulti-indices andfCk=max|β|ksupxΩ|Dβf(x)|.{\displaystyle \|f\|_{C^{k}}=\max _{|\beta |\leq k}\sup _{x\in \Omega }\left|D^{\beta }f(x)\right|.}

These seminorms and norms are often denoted simply|f|0,α{\displaystyle \left|f\right|_{0,\alpha }} andfk,α{\displaystyle \left\|f\right\|_{k,\alpha }} or also|f|0,α,Ω{\displaystyle \left|f\right|_{0,\alpha ,\Omega }\;} andfk,α,Ω{\displaystyle \left\|f\right\|_{k,\alpha ,\Omega }} in order to stress the dependence on the domain off. IfΩ is open and bounded, thenCk,α(Ω¯){\displaystyle C^{k,\alpha }({\overline {\Omega }})} is aBanach space with respect to the normCk,α{\displaystyle \|\cdot \|_{C^{k,\alpha }}}.

Compact embedding of Hölder spaces

[edit]

Let Ω be a bounded subset of some Euclidean space (or more generally, any totally bounded metric space) and let 0 < α < β ≤ 1 two Hölder exponents. Then, there is an obvious inclusion map of the corresponding Hölder spaces:C0,β(Ω)C0,α(Ω),{\displaystyle C^{0,\beta }(\Omega )\to C^{0,\alpha }(\Omega ),}which is continuous since, by definition of the Hölder norms, we have:fC0,β(Ω):|f|0,α,Ωdiam(Ω)βα|f|0,β,Ω.{\displaystyle \forall f\in C^{0,\beta }(\Omega ):\qquad |f|_{0,\alpha ,\Omega }\leq \mathrm {diam} (\Omega )^{\beta -\alpha }|f|_{0,\beta ,\Omega }.}

Moreover, this inclusion is compact, meaning that bounded sets in the‖ · ‖0,β norm are relatively compact in the‖ · ‖0,α norm. This is a direct consequence of theAscoli-Arzelà theorem. Indeed, let(un) be a bounded sequence inC0,β(Ω). Thanks to the Ascoli-Arzelà theorem we can assume without loss of generality thatunu uniformly, and we can also assumeu = 0. Then|unu|0,α=|un|0,α0,{\displaystyle \left|u_{n}-u\right|_{0,\alpha }=\left|u_{n}\right|_{0,\alpha }\to 0,}because|un(x)un(y)||xy|α=(|un(x)un(y)||xy|β)αβ|un(x)un(y)|1αβ|un|0,βαβ(2un)1αβ=o(1).{\displaystyle {\frac {|u_{n}(x)-u_{n}(y)|}{|x-y|^{\alpha }}}=\left({\frac {|u_{n}(x)-u_{n}(y)|}{|x-y|^{\beta }}}\right)^{\frac {\alpha }{\beta }}\left|u_{n}(x)-u_{n}(y)\right|^{1-{\frac {\alpha }{\beta }}}\leq |u_{n}|_{0,\beta }^{\frac {\alpha }{\beta }}\left(2\|u_{n}\|_{\infty }\right)^{1-{\frac {\alpha }{\beta }}}=o(1).}

Examples

[edit]
Proof

Consider the casex<y{\displaystyle x<y} wherex,yR{\displaystyle x,y\in \mathbb {R} }. Then|f(x)f(y)xy|C|xy|α1{\displaystyle \left|{\frac {f(x)-f(y)}{x-y}}\right|\leq C|x-y|^{\alpha -1}}, so the difference quotient converges to zero as|xy|0{\displaystyle |x-y|\to 0}. Hencef{\displaystyle f'} exists and is zero everywhere. Mean-value theorem now impliesf{\displaystyle f} is constant.Q.E.D.

Alternate idea: Fixx<y{\displaystyle x<y} and partition[x,y]{\displaystyle [x,y]} into{xi}i=0n{\displaystyle \{x_{i}\}_{i=0}^{n}} wherexk=x+kn(yx){\displaystyle x_{k}=x+{\frac {k}{n}}(y-x)}. Then|f(x)f(y)||f(x0)f(x1)|+|f(x1)f(x2)|++|f(xn1)f(xn)|i=1nC(|xy|n)α=C|xy|αn1α0{\displaystyle |f(x)-f(y)|\leq |f(x_{0})-f(x_{1})|+|f(x_{1})-f(x_{2})|+\ldots +|f(x_{n-1})-f(x_{n})|\leq \sum _{i=1}^{n}C\left({\frac {|x-y|}{n}}\right)^{\alpha }=C|x-y|^{\alpha }n^{1-\alpha }\to 0} asn{\displaystyle n\to \infty }, due toα>1{\displaystyle \alpha >1}. Thusf(x)=f(y){\displaystyle f(x)=f(y)}.Q.E.D.

Properties

[edit]

See also

[edit]

Notes

[edit]
  1. ^Hardy, G. H. (1916). "Weierstrass's Non-Differentiable Function".Transactions of the American Mathematical Society.17 (3):301–325.doi:10.2307/1989005.JSTOR 1989005.
  2. ^See, for example, Han and Lin, Chapter 3, Section 1. This result was originally due toSergio Campanato.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hölder_condition&oldid=1279420940"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp