The microbial composition of the gut microbiota varies across regions of the digestive tract. Thecolon contains the highest microbial density of any human-associated microbial community studied so far, representing between 300 and 1000 differentspecies.[6] Bacteria are the largest and to date, best studied component and 99% of gut bacteria come from about 30 or 40 species.[7] About 55% of the dry mass offeces is bacteria.[8] Over 99% of the bacteria in the gut areanaerobes, but in thececum,aerobic bacteria reach high densities.[5] It is estimated that the human gut microbiota have around a hundred times as manygenes as there are in thehuman genome.
Composition and distribution of gut microbiota in human body
In humans, the gut microbiota has the highest numbers and species of bacteria compared to other areas of the body.[9] The approximate number of bacteria composing the gut microbiota is about 1013–1014 (10,000 to 100,000 billion).[10] In humans, the gut flora is established at birth and gradually transitions towards a state resembling that of adults by the age of two,[11] coinciding with the development and maturation of theintestinal epithelium andintestinal mucosal barrier. This barrier is essential for supporting a symbiotic relationship with the gut flora while providing protection against pathogenic organisms.[12][13]
The composition of human gut microbiota changes over time, when the diet changes, and as overall health changes.[9][15] Asystematic review from 2016 examined the preclinical and small human trials that have been conducted with certain commercially available strains of probiotic bacteria and identified those that had the most potential to be useful for certaincentral nervous system disorders.[16] It should also be highlighted that the Mediterranean diet, rich in vegetables and fibers, stimulates the activity and growth of beneficial bacteria for the brain.[17]
The microbial composition of the gut microbiota varies across the digestive tract. In thestomach andsmall intestine, relatively few species of bacteria are generally present.[6][18]Fungi,protists,archaea, andviruses are also present in the gut flora, but less is known about their activities.[19]
Many species in the gut have not been studied outside of their hosts because they cannot becultured.[18][7][20] While there are a small number of core microbial species shared by most individuals, populations of microbes can vary widely.[21] Within an individual, their microbial populations stay fairly constant over time, with some alterations occurring due to changes in lifestyle, diet and age.[6][22] TheHuman Microbiome Project has set out to better describe themicrobiota of the human gut and other body locations.[citation needed]
Archaea constitute another large class of gut flora which are important in the metabolism of the bacterial products of fermentation.
Industrialization is associated with changes in the microbiota and the reduction of diversity could drive certain species to extinction; in 2018, researchers proposed abiobank repository of human microbiota.[26]
Anenterotype is a classification of living organisms based on its bacteriologicalecosystem in the human gut microbiome not dictated by age, gender, body weight, or national divisions.[27] There are indications that long-term diet influences enterotype.[28] Three human enterotypes have been proposed,[27][29] but their value has been questioned.[30]
The small intestine contains a trace amount of microorganisms due to the proximity and influence of the stomach.Gram-positivecocci androd-shaped bacteria are the predominant microorganisms found in the small intestine.[5] However, in the distal portion of the small intestine alkaline conditions support gram-negative bacteria of theEnterobacteriaceae.[5] The bacterial flora of the small intestine aid in a wide range of intestinal functions. The bacterial flora provide regulatory signals that enable the development and utility of the gut. Overgrowth of bacteria in the small intestine can lead to intestinal failure.[34] In addition the large intestine contains the largest bacterial ecosystem in the human body.[5] About 99% of the large intestine and feces flora are made up of obligate anaerobes such asBacteroides andBifidobacterium.[35] Factors that disrupt the microorganism population of the large intestine include antibiotics, stress, and parasites.[5]
Bacteria make up most of the flora in thecolon[36] and accounts for 60% offecal nitrogen.[6] This fact makes feces an ideal source of gut flora for any tests and experiments by extracting the nucleic acid from fecal specimens, and bacterial 16S rRNA gene sequences are generated with bacterial primers. This form of testing is also often preferable to more invasive techniques, such as biopsies.
Research suggests that the relationship between gutflora and humans is not merelycommensal (a non-harmful coexistence), but rather is amutualistic,symbiotic relationship.[18] Though people can survive with no gut flora,[38] the microorganisms perform a host of useful functions, such asfermenting unused energy substrates, training theimmune system via end products of metabolism likepropionate andacetate, preventing growth of harmful species, regulating the development of the gut, producing vitamins for the host (such asbiotin andvitamin K), and producing hormones to direct the host to store fats.[5] Extensive modification and imbalances of the gut microbiota and its microbiome or gene collection are associated with obesity.[41] However, in certain conditions, some species are thought to be capable of causingdisease by causinginfection or increasingcancer risk for the host.[6][36]
Fungi andprotists also make up a part of the gut flora, but less is known about their activities.[42]
Due to the prevalence of fungi in the natural environment, determining which genera and species are permanent members of the gutmycobiome is difficult.[43][44] Research is underway as to whetherPenicillium is a permanent or transient member of the gut flora, obtained from dietary sources such ascheese, though several species in the genus are known to survive at temperatures around 37°C, about the same as thecore body temperature.[44]Saccharomyces cerevisiae, brewer's yeast, is known to reach the intestines after being ingested and can be responsible for the conditionauto-brewery syndrome in cases where it is overabundant,[44][45][46] whileCandida albicans is likely a permanent member, and is believed to be acquired at birth throughvertical transmission.[47][medical citation needed]
There are common patterns of microbiome composition evolution during life.[49] In general, the diversity of microbiota composition of fecal samples is significantly higher in adults than in children, although interpersonal differences are higher in children than in adults.[50] Much of the maturation of microbiota into an adult-like configuration happens during the first three years of life.[50]
As the microbiome composition changes, so does the composition of bacterial proteins produced in the gut. In adult microbiomes, a high prevalence of enzymes involved infermentation,methanogenesis and the metabolism ofarginine,glutamate,aspartate andlysine have been found. In contrast, in infant microbiomes the dominant enzymes are involved incysteine metabolism and fermentation pathways.[50]
Gut microbiome composition depends on the geographic origin of populations. Variations in a trade-off ofPrevotella, the representation of theurease gene, and the representation of genes encoding glutamate synthase/degradation or other enzymes involved in amino acids degradation or vitamin biosynthesis show significant differences between populations from the US,Malawi, or Amerindian origin.[50]
The US population has a high representation of enzymes encoding the degradation ofglutamine and enzymes involved in vitamin andlipoic acid biosynthesis; whereas Malawi and Amerindian populations have a high representation of enzymes encoding glutamate synthase and they also have an overrepresentation ofα-amylase in their microbiomes. As the US population has a diet richer in fats than Amerindian or Malawian populations which have a corn-rich diet, the diet is probably the main determinant of the gut bacterial composition.[50]
Further studies have indicated a large difference in the composition of microbiota between European and rural African children. The fecal bacteria of children fromFlorence were compared to that of children from the small rural village ofBoulpon inBurkina Faso. The diet of a typical child living in this village is largely lacking in fats and animal proteins and rich in polysaccharides and plant proteins. The fecal bacteria of European children were dominated byFirmicutes and showed a marked reduction in biodiversity, while the fecal bacteria of the Boulpon children was dominated byBacteroidetes. The increased biodiversity and different composition of the gut microbiome in African populations may aid in the digestion of normally indigestible plant polysaccharides and also may result in a reduced incidence of non-infectious colonic diseases.[51]
On a smaller scale, it has been shown that sharing numerous common environmental exposures in a family is a strong determinant of individual microbiome composition. This effect has no genetic influence and it is consistently observed in culturally different populations.[50]
Malnourished children have less mature and less diverse gut microbiota than healthy children, and changes in the microbiome associated with nutrient scarcity can in turn be a pathophysiological cause of malnutrition.[52][53] Malnourished children also typically have more potentially pathogenic gut flora, and moreyeast in their mouths and throats.[54] Altering diet may lead to changes in gut microbiota composition and diversity.[55]
Researchers with the American Gut Project and Human Microbiome Project found that twelve microbe families varied in abundance based on the race or ethnicity of the individual. The strength of these associations is limited by the small sample size: the American Gut Project collected data from 1,375 individuals, 90% of whom were white.[56] The Healthy Life in an Urban Setting (HELIUS) study in Amsterdam found that those of Dutch ancestry had the highest level of gut microbiota diversity, while those of South Asian andSurinamese descent had the lowest diversity. The study results suggested that individuals of the same race or ethnicity have more similar microbiomes than individuals of different racial backgrounds.[56]
As of 2020, at least two studies have demonstrated a link between an individual'ssocioeconomic status (SES) and their gut microbiota. A study inChicago found that individuals in higher SES neighborhoods had greater microbiota diversity. People from higher SES neighborhoods also had more abundantBacteroides bacteria. Similarly, a study oftwins in the United Kingdom found that higher SES was also linked with a greater gut diversity.[56]
As of 2023, a study suggests that antibiotics, especially those used in the treatment of broad-spectrum bacterial infections, have negative effects on the gut microbiota.[57] The study also states that there are many experts on intestinal health concerned that antibody usage has reduced the diversity of the gut microbiota, many of the strains are lost, and if there is a re-emergence of the bacteria, is gradual and long-term.[58]
The establishment of a gut flora is crucial to the health of an adult, as well as the functioning of the gastrointestinal tract.[59] In humans, a gut flora similar to an adult's is formed within one to two years of birth as microbiota are acquired through parent-to-child transmission and transfer from food, water, and other environmental sources.[60][12]
Illustration showing the developmental colonization of gut microbiota
The traditional view of thegastrointestinal tract of a normalfetus is that it is sterile, although this view has been challenged in the past few years.[timeframe?][61] Multiple lines of evidence have begun to emerge that suggest there may be bacteria in the intrauterine environment. In humans, research has shown that microbial colonization may occur in the fetus[62] with one study showingLactobacillus andBifidobacterium species were present in placental biopsies.[63] Severalrodent studies have demonstrated the presence of bacteria in the amniotic fluid and placenta, as well as in themeconium of babies born by sterile cesarean section.[64][65] In another study, researchers administered a culture of bacteria orally to pregnant mice, and detected the bacteria in the offspring, likely resulting from transmission between the digestive tract and amniotic fluid via the blood stream.[66] However, researchers caution that the source of these intrauterine bacteria, whether they are alive, and their role, is not yet understood.[67][63]
During birth and rapidly thereafter, bacteria from the mother and the surrounding environment colonize the infant's gut.[12] The exact sources of bacteria are not fully understood, but may include the birth canal, other people (parents, siblings, hospital workers), breastmilk, food, and the general environment with which the infant interacts.[68] Research has shown that the microbiome of babies bornvaginally differs significantly from that of babies delivered bycaesarean section and that vaginally born babies got most of their gut bacteria from their mother, while the microbiota of babies born by caesarean section had more bacteria associated with hospital environments.[69]
During the first year of life, the composition of the gut flora is generally simple and changes a great deal with time and is not the same across individuals.[12] The initial bacterial population are generallyfacultative anaerobic organisms; investigators believe that these initial colonizers decrease the oxygen concentration in the gut, which in turn allows obligately anaerobic bacteria likeBacteroidota,Actinomycetota, andBacillota to become established and thrive.[12] Breast-fed babies become dominated bybifidobacteria, possibly due to the contents ofbifidobacterial growth factors in breast milk, and by the fact that breast milk carries prebiotic components, allowing for healthy bacterial growth.[63][70] Breast milk also contains higher levels of Immunoglobulin A (IgA) to help with the tolerance and regulation of the baby's immune system.[71] In contrast, the microbiota offormula-fed infants is more diverse, with high numbers ofEnterobacteriaceae,enterococci, bifidobacteria,Bacteroides, and clostridia.[72]
Caesarean section,antibiotics, andformula feeding may alter the gut microbiome composition.[63] Children treated with antibiotics have less stable, and less diverse floral communities.[73] Caesarean sections have been shown to be disruptive to mother-offspring transmission of bacteria, which impacts the overall health of the offspring by raising risks of disease such asceliac disease,asthma, andtype1 diabetes.[63] This further evidences the importance of a healthy gut microbiome. Various methods of microbiome restoration are being explored, typically involving exposing the infant to maternal vaginal contents, and oral probiotics.[63]
When the study of gut flora began in 1995,[74] it was thought to have three key roles: direct defense againstpathogens, fortification of host defense by its role in developing and maintaining theintestinal epithelium and inducing antibody production there, and metabolizing otherwise indigestible compounds in food. Subsequent work discovered its role in training the developing immune system, and yet further work focused on its role in thegut–brain axis.[75]The gut microbiota not only influences intestinal health but also plays a role in systemic immune regulation, including interactions with the pulmonary immune environment through what is known as the 'gut–lung axis'.[76]
The gut flora community plays a direct role in defending against pathogens by fully colonising the space, making use of all available nutrients, and by secreting compounds known ascytokines that kill or inhibit unwelcome organisms that would compete for nutrients with it.[77] Different strains of gut bacteria cause the production of different cytokines. Cytokines are chemical compounds produced by our immune system for initiating theinflammatory response against infections. Disruption of the gut flora allows competing organisms likeClostridioides difficile to become established that otherwise are kept in abeyance.[77]
Development of enteric protection and immune system
In humans, a gut flora similar to an adult's is formed within one to two years of birth.[12] As the gut flora gets established, the lining of the intestines – the intestinal epithelium and the intestinal mucosal barrier that it secretes – develop as well, in a way that is tolerant to, and even supportive of, commensalistic microorganisms to a certain extent and also provides a barrier to pathogenic ones.[12] Specifically,goblet cells that produce the mucosa proliferate, and the mucosa layer thickens, providing an outside mucosal layer in which "friendly" microorganisms can anchor and feed, and an inner layer that even these organisms cannot penetrate.[12][13] Additionally, the development ofgut-associated lymphoid tissue (GALT), which forms part of the intestinal epithelium and which detects and reacts to pathogens, appears and develops during the time that the gut flora develops and established.[12] The GALT that develops is tolerant to gut flora species, but not to other microorganisms.[12] GALT also normally becomes tolerant to food to which the infant is exposed, as well as digestive products of food, and gut flora'smetabolites (molecules formed from metabolism) produced from food.[12]
The humanimmune system createscytokines that can drive the immune system to produce inflammation in order to protect itself, and that can tamp down the immune response to maintainhomeostasis and allow healing after insult or injury.[12] Different bacterial species that appear in gut flora have been shown to be able to drive the immune system to create cytokines selectively; for exampleBacteroides fragilis and someClostridia species appear to drive an anti-inflammatory response, while somesegmented filamentous bacteria drive the production of inflammatory cytokines.[12][78] Gut flora can also regulate the production ofantibodies by the immune system.[12][79] One function of this regulation is to causeB cells to class switch toIgA. In most cases B cells need activation fromT helper cells to induceclass switching; however, in another pathway, gut flora causeNF-kB signaling by intestinal epithelial cells which results in further signaling molecules being secreted.[80] These signaling molecules interact with B cells to induce class switching to IgA.[80] IgA is an important type of antibody that is used in mucosal environments like the gut. It has been shown that IgA can help diversify the gut community and helps in getting rid of bacteria that cause inflammatory responses.[81] Ultimately, IgA maintains a healthy environment between the host and gut bacteria.[81] These cytokines and antibodies can have effects outside the gut, in the lungs and other tissues.[12]
The immune system can also be altered due to the gut bacteria's ability to producemetabolites that can affect cells in the immune system. For exampleshort-chain fatty acids (SCFA) can be produced by some gut bacteria throughfermentation.[82] SCFAs stimulate a rapid increase in the production of innate immune cells likeneutrophils,basophils andeosinophils.[82] These cells are part of the innate immune system that try to limit the spread of infection.
Without gut flora, the human body would be unable to utilize some of the undigestedcarbohydrates it consumes, because some types of gut flora haveenzymes that human cells lack for breaking down certainpolysaccharides.[14] Rodents raised in asterile environment and lacking in gut flora need to eat 30% morecalories just to remain the same weight as their normal counterparts.[14] Carbohydrates that humans cannotdigest without bacterial help include certainstarches,fiber,oligosaccharides, andsugars that the body failed to digest and absorb likelactose in the case oflactose intolerance andsugar alcohols,mucus produced by the gut, and proteins.[9][14]
Gut flora also synthesize vitamins likebiotin andfolate, and facilitate absorption ofdietary minerals, including magnesium, calcium, and iron.[6][22]Methanobrevibacter smithii is unique because it is not a species of bacteria, but rather a member ofdomainArchaea, and is the most abundantmethane-producing archaeal species in the human gastrointestinal microbiota.[88]
Gut microbiota also serve as a source of vitamins K and B12, which are not produced by the body or produced in little amount.[89][90]
Bacteria that degrade cellulose (such asRuminococcus) are prevalent amonggreat apes, ancient human societies,hunter-gatherer communities, and even modern rural populations. However, they are rare in industrialized societies. Human-associated strains have acquired genes that can degrade specific plant fibers such asmaize,rice, andwheat. Bacterial strains found in primates can also degradechitin, a polymer abundant in insects, which are part of the diet of many nonhumanprimates. The decline of these bacteria in the human gut were likely influenced by the shift toward western lifestyles.[91]
The humanmetagenome (i.e., the genetic composition of an individual and all microorganisms that reside on or within the individual's body) varies considerably between individuals.[92][93] Since the total number of microbial cells in the human body (over 100 trillion) greatly outnumbersHomo sapiens cells (tens of trillions),[note 1][92][94] there is considerable potential for interactions between drugs and an individual's microbiome, including: drugs altering the composition of thehuman microbiome,drug metabolism by microbial enzymes modifying the drug'spharmacokinetic profile, and microbial drug metabolism affecting a drug's clinical efficacy andtoxicity profile.[92][93][95]
Apart from carbohydrates, gut microbiota can also metabolize otherxenobiotics such as drugs,phytochemicals, and food toxicants. More than 30 drugs have been shown to be metabolized by gut microbiota.[96] The microbial metabolism of drugs can sometimes inactivate the drug.[97]
The gut microbiota is an enriched community that contains diverse genes with huge biochemical capabilities to modify drugs, especially those taken by mouth.[98] Gut microbiota can affect drug metabolism via direct and indirect mechanisms.[99] The direct mechanism is mediated by the microbial enzymes that can modify the chemical structure of the administered drugs.[100] Conversely, the indirect pathway is mediated by the microbial metabolites which affect the expression of host metabolizing enzymes such ascytochrome P450.[101][99] The effects of the gut microbiota on the pharmacokinetics and bioavailability of the drug have been investigated a few decades ago.[102][103][104] These effects can be varied; it could activate the inactive drugs such as lovastatin,[105] inactivate the active drug such asdigoxin[106] or induce drug toxicity as inirinotecan.[107] Since then, the impacts of the gut microbiota on the pharmacokinetics of many drugs were heavily studied.[108][98]
The human gut microbiota plays a crucial role in modulating the effect of the administered drugs on the human. Directly, gut microbiota can synthesize and release a series of enzymes with the capability to metabolize drugs such as microbial biotransformation of L-dopa by decarboxylase and dehydroxylase enzymes.[100] On the contrary, gut microbiota may also alter the metabolism of the drugs by modulating the host drug metabolism. This mechanism can be mediated by microbial metabolites or by modifying host metabolites which in turn change the expression of host metabolizing enzymes.[101]
A large number of studies have demonstrated the metabolism of over 50 drugs by the gut microbiota.[108][99] For example, lovastatin (a cholesterol-lowering agent) which is a lactone prodrug is partially activated by the human gut microbiota forming active acid hydroxylated metabolites.[105] Conversely, digoxin (a drug used to treat Congestive Heart Failure) is inactivated by a member of the gut microbiota (i.e.Eggerthellalanta).[109]Eggerthellalanta has a cytochrome-encoding operon up-regulated by digoxin and associated with digoxin-inactivation.[109] Gut microbiota can also modulate the efficacy and toxicity of chemotherapeutic agents such as irinotecan.[110] This effect is derived from the microbiome-encoded β-glucuronidase enzymes which recover the active form of the irinotecan causing gastrointestinal toxicity.[111]
This microbial community in the gut has a huge biochemical capability to produce distinct secondary metabolites that are sometimes produced from the metabolic conversion of dietary foods such asfibers, endogenous biological compounds such asindole orbile acids.[112][113][114] Microbial metabolites especially short chain fatty acids (SCFAs) and secondary bile acids (BAs) play important roles for the human in health and disease states.[115][116][117]
One of the most important bacterial metabolites produced by the gut microbiota is secondary bile acids (BAs).[114] These metabolites are produced by the bacterial biotransformation of the primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) into secondary bile acids (BAs) lithocholic acid (LCA) and deoxy cholic acid (DCA) respectively.[118] Primary bile acids which are synthesized by hepatocytes and stored in the gall bladder possess hydrophobic characters. These metabolites are subsequently metabolized by the gut microbiota into secondary metabolites with increased hydrophobicity.[118] Bile salt hydrolases (BSH) which are conserved across gut microbiota phyla such asBacteroides,Firmicutes, andActinobacteria responsible for the first step of secondary bile acids metabolism.[118] Secondary bile acids (BAs) such as DCA and LCA have been demonstrated to inhibit bothClostridioides difficile germination and outgrowth.[117]
The gut microbiota is important for maintaining homeostasis in the intestine. Development ofintestinal cancer is associated with an imbalance in the natural microflora (dysbiosis).[119] The secondary bile aciddeoxycholic acid is associated with alterations of the microbial community that lead to increased intestinal carcinogenesis.[119] Increased exposure of the colon to secondary bile acids resulting from dysbiosis can causeDNA damage, and such damage can produce carcinogenic mutations in cells of the colon.[120] The high density of bacteria in thecolon (about 1012 per ml.) that are subject to dysbiosis compared to the relatively low density in thesmall intestine (about 102 per ml.) may account for the greater than 10-fold higher incidence of cancer in the colon compared to the small intestine.[120]
The gut microbiota contributes to digestion and immune modulation, as it plays a role in the gut-brain axis, where microbial metabolites such as short-chain fatty acids and neurotransmitters influence brain function and behavior. The gut–brain axis is the biochemical signaling that takes place between thegastrointestinal tract and thecentral nervous system.[75] That term has been expanded to include the role of the gut flora in the interplay; the term "microbiome––brain axis" is sometimes used to describe paradigms explicitly including the gut flora.[75][121][122] Broadly defined, the gut–brain axis includes the central nervous system,neuroendocrine andneuroimmune systems including thehypothalamic–pituitary–adrenal axis (HPA axis), sympathetic and parasympathetic arms of theautonomic nervous system including theenteric nervous system, thevagus nerve, and the gutmicrobiota.[75][122] Studies show links between gut dysbiosis and mental health conditions, indicating a complex interaction that impacts mood and cognitive functions.
Altering the numbers of gut bacteria, for example by takingbroad-spectrum antibiotics, may affect the host's health and ability to digest food.[123] Antibiotics can causeantibiotic-associated diarrhea by irritating thebowel directly, changing the levels of microbiota, or allowingpathogenic bacteria to grow.[7] Another harmful effect of antibiotics is the increase in numbers ofantibiotic-resistant bacteria found after their use, which, when they invade the host, cause illnesses that are difficult to treat with antibiotics.[123]
Changing the numbers and species of gut microbiota can reduce the body's ability to ferment carbohydrates and metabolizebile acids and may causediarrhea. Carbohydrates that are not broken down may absorb too much water and cause runny stools, or lack of SCFAs produced by gut microbiota could cause diarrhea.[7]
A reduction in levels of native bacterial species also disrupts their ability to inhibit the growth of harmful species such asC. difficile andSalmonella Kedougou, and these species can get out of hand, though their overgrowth may be incidental and not be the true cause of diarrhea.[6][7][123] Emerging treatment protocols for C. difficile infections involve fecal microbiota transplantation of donor feces (seeFecal transplant).[124] Initial reports of treatment describe success rates of 90%, with few side effects. Efficacy is speculated to result from restoring bacterial balances of bacteroides and firmicutes classes of bacteria.[125]
The composition of the gut microbiome also changes in severe illnesses, due not only to antibiotic use but also to such factors asischemia of the gut, failure to eat, andimmune compromise. Negative effects from this have led to interest inselective digestive tract decontamination, a treatment to kill only pathogenic bacteria and allow the re-establishment of healthy ones.[126]
Antibiotics alter the population of the microbiota in thegastrointestinal tract, and this may change the intra-community metabolic interactions, modify caloric intake by using carbohydrates, and globally affect host metabolic, hormonal, and immune homeostasis.[127]
There is reasonable evidence that taking probiotics containingLactobacillus species may help prevent antibiotic-associated diarrhea and that taking probiotics withSaccharomyces (e.g.,Saccharomyces boulardii) may help to preventClostridioides difficile infection following systemic antibiotic treatment.[128]
The gut microbiota of a woman changes aspregnancy advances, with the changes similar to those seen inmetabolic syndromes such as diabetes. The change in gut microbiota causes no ill effects. The newborn's gut microbiota resemble the mother's first-trimester samples. The diversity of the microbiome decreases from the first to third trimester, as the numbers of certain species go up.[63][129]
Probiotics, prebiotics, synbiotics, and pharmabiotics
Probiotics contain livemicroorganisms. When consumed, they are believed to provide health benefits by altering the microbiome composition.[130][131][132] Current research explores using probiotics as a way to restore the microbial balance of theintestine by stimulating the immune system and inhibiting pro-inflammatorycytokines.[130]
With regard to gut microbiota,prebiotics are typically non-digestible,fiber compounds that pass undigested through the upper part of thegastrointestinal tract and stimulate the growth or activity of advantageous gut flora by acting assubstrate for them.[39][133]
The term "pharmabiotics" is used in various ways, to mean:pharmaceutical formulations (standardized manufacturing that can obtain regulatory approval as a drug) of probiotics,prebiotics, orsynbiotics;[135] probiotics that have been genetically engineered or otherwise optimized for best performance (shelf life, survival in the digestive tract, etc.);[136] and the natural products of gut flora metabolism (vitamins, etc.).[137]
Feces of about 10–15% of people consistently floats in toilet water ('floaters'), while the rest produce feces that sinks ('sinkers') and production of gas causes feces to float.[144] While conventional mice often produce 'floaters', gnotobiotic germfree mice no gut microbiota (bred in germfree isolator) produce 'sinkers', and gut microbiota colonization in germfree mice leads to food transformation to microbial biomass and enrichment of multiple gasogenic bacterial species that turns the 'sinkers' into 'floaters'.[145]
Tests for whether non-antibiotic drugs may impact human gut-associated bacteria were performed byin vitro analysis on more than 1000 marketed drugs against 40 gut bacterial strains, demonstrating that 24% of the drugs inhibited the growth of at least one of the bacterial strains.[146]
Bacteria in the digestive tract can contribute to and be affected by disease in various ways. The presence or overabundance of some kinds of bacteria may contribute to inflammatory disorders such asinflammatory bowel disease.[6] Additionally, metabolites from certain members of the gut flora may influence host signalling pathways, contributing to disorders such asobesity andcolon cancer.[6] Some gut bacteria may also causeinfections andsepsis, for example when they are allowed topass from the gut into the rest of the body.[6]
Helicobacter pylori infection can initiate formation of stomach ulcers when the bacteria penetrate the stomach epithelial lining, then causing aninflammatory phagocytotic response.[147] In turn, the inflammation damages parietal cells which release excessivehydrochloric acid into the stomach and produce less of the protective mucus.[148] Injury to the stomach lining, leading toulcers, develops when gastric acid overwhelms the defensive properties of cells and inhibits endogenousprostaglandin synthesis, reduces mucus and bicarbonate secretion, reduces mucosal blood flow, and lowers resistance to injury.[148] Reduced protective properties of the stomach lining increase vulnerability to further injury and ulcer formation by stomach acid,pepsin, and bile salts.[147][148]
Normally-commensal bacteria can harm the host if they extrude from the intestinal tract.[12][13]Translocation, which occurs when bacteria leave the gut through itsmucosal lining, can occur in a number of different diseases.[13] If the gut is perforated, bacteria invade theinterstitium, causing a potentially fatalinfection.[5]: 715
The two main types ofinflammatory bowel diseases,Crohn's disease andulcerative colitis, arechronic inflammatory disorders of the gut; the causes of these diseases are unknown and issues with the gut flora and its relationship with the host have been implicated in these conditions.[15][149][150][151] Additionally, it appears that interactions of gut flora with the gut–brain axis have a role in IBD, with physiological stress mediated through thehypothalamic–pituitary–adrenal axis driving changes to intestinal epithelium and the gut flora in turn releasing factors and metabolites that trigger signaling in theenteric nervous system and thevagus nerve.[4]
The diversity of gut flora appears to be significantly diminished in people with inflammatory bowel diseases compared to healthy people; additionally, in people with ulcerative colitis, Proteobacteria and Actinobacteria appear to dominate; in people with Crohn's,Enterococcus faecium and several Proteobacteria appear to be over-represented.[4]
There is reasonable evidence that correcting gut flora imbalances by taking probiotics withLactobacilli andBifidobacteria can reduce visceral pain and gut inflammation in IBD.[128]
Irritable bowel syndrome is a result of stress and chronic activation of the HPA axis; its symptoms include abdominal pain, changes in bowel movements, and an increase in proinflammatory cytokines. Overall, studies have found that the luminal and mucosal microbiota are changed in irritable bowel syndrome individuals, and these changes can relate to the type of irritation such as diarrhea orconstipation. Also, there is a decrease in the diversity of the microbiome with low levels of fecal Lactobacilli and Bifidobacteria, high levels of facultativeanaerobic bacteria such asEscherichia coli, and increased ratios of Firmicutes: Bacteroidetes.[122]
With asthma, two hypotheses have been posed to explain its rising prevalence in the developed world. Thehygiene hypothesis posits that children in the developed world are not exposed to enough microbes and thus may contain lower prevalence of specific bacterial taxa that play protective roles.[152] The second hypothesis focuses on theWestern pattern diet, which lackswhole grains andfiber and has an overabundance ofsimple sugars.[15] Both hypotheses converge on the role of short-chain fatty acids (SCFAs) inimmunomodulation. These bacterial fermentation metabolites are involved in immune signalling that prevents the triggering of asthma and lower SCFA levels are associated with the disease.[152][153] Lacking protective genera such asLachnospira,Veillonella,Rothia andFaecalibacterium has been linked to reduced SCFA levels.[152] Further, SCFAs are the product of bacterial fermentation of fiber, which is low in the Western pattern diet.[15][153] SCFAs offer a link between gut flora and immune disorders, and as of 2016, this was an active area of research.[15] Similar hypotheses have also been posited for the rise of food and other allergies.[154]
The connection between the gut microbiota anddiabetes mellitus type 1 has also been linked to SCFAs, such asbutyrate and acetate. Diets yielding butyrate and acetate from bacterial fermentation show increasedTreg expression.[155]Treg cellsdownregulateeffector T cells, which in turn reduces theinflammatory response in the gut.[156] Butyrate is an energy source for colon cells. butyrate-yielding diets thus decreasegut permeability by providing sufficient energy for the formation oftight junctions.[157] Additionally, butyrate has also been shown to decrease insulin resistance, suggesting gut communities low in butyrate-producing microbes may increase chances of acquiringdiabetes mellitus type 2.[158] Butyrate-yielding diets may also have potentialcolorectal cancer suppression effects.[157]
The gut flora have been implicated in obesity andmetabolic syndrome due to a key role in the digestive process; the Western pattern diet appears to drive and maintain changes in the gut flora that in turn change how much energy is derived from food and how that energy is used.[151][159] One aspect of ahealthy diet that is often lacking in theWestern-pattern diet is fiber and other complex carbohydrates that a healthy gut flora require flourishing; changes to gut flora in response to a Western-pattern diet appear to increase the amount of energy generated by the gut flora which may contribute to obesity and metabolic syndrome.[128] There is also evidence that microbiota influence eating behaviours based on the preferences of the microbiota, which can lead to the host consuming more food eventually resulting in obesity. It has generally been observed that with higher gut microbiome diversity, the microbiota will spend energy and resources on competing with other microbiota and less on manipulating the host. The opposite is seen with lower gut microbiome diversity, and these microbiotas may work together to create host food cravings.[55]
Additionally, the liver plays a dominant role inblood glucose homeostasis by maintaining a balance between the uptake and storage of glucose through the metabolic pathways ofglycogenesis andgluconeogenesis. Intestinal lipids regulate glucose homeostasis involving a gut–brain–liver axis. The direct administration of lipids into the upper intestine increases the long chain fattyacyl-coenzyme A (LCFA-CoA) levels in the upper intestines and suppresses glucose production even under subdiaphragmaticvagotomy or gut vagaldeafferentation. This interrupts the neural connection between the brain and the gut and blocks the upper intestinal lipids' ability to inhibit glucose production. The gut–brain–liver axis and gut microbiota composition can regulate the glucose homeostasis in the liver and provide potential therapeutic methods to treat obesity and diabetes.[160]
Just as gut flora can function in a feedback loop that can drive the development of obesity, there is evidence that restricting intake of calories (i.e.,dieting) can drive changes to the composition of the gut flora.[151]
The composition of the human gut microbiome is similar to that of the other great apes. However, humans' gut biota has decreased in diversity and changed in composition since our evolutionary split fromPan.[161] Humans display increases in Bacteroidetes, a bacterial phylum associated with diets high in animal protein and fat, and decreases in Methanobrevibacter and Fibrobacter, groups that ferment complex plant polysaccharides.[161] These changes are the result of the combined dietary, genetic, and cultural changes humans have undergone since evolutionary divergence fromPan.[citation needed]
In addition to humans and vertebrates, some insects also have complex and diverse gut microbiota that play key nutritional roles.[2] Microbial communities associated withtermites can constitute a majority of the weight of the individuals and perform important roles in the digestion oflignocellulose andnitrogen fixation.[162] It is known that the disruption of gut microbiota of termites using agents like antibiotics[163] orboric acid[164] (a common agent used in preventative treatment) causes severe damage to digestive function and leads to the rise of opportunistic pathogens.[164] These communities are host-specific, and closely related insect species share comparable similarities in gut microbiota composition.[165][166] Incockroaches, gut microbiota have been shown to assemble in a deterministic fashion, irrespective of theinoculum;[167] the reason for this host-specific assembly remains unclear. Bacterial communities associated with insects like termites and cockroaches are determined by a combination of forces, primarily diet, but there is some indication that hostphylogeny may also be playing a role in the selection of lineages.[165][166]
For more than 51 years it has been known that the administration of low doses of antibacterial agents promotes the growth of farm animals to increase weight gain.[127]
In a study carried out onmice the ratio ofFirmicutes andLachnospiraceae was significantly elevated in animals treated with subtherapeutic doses of different antibiotics. By analyzing the caloric content of faeces and the concentration of small chain fatty acids (SCFAs) in the GI tract, it was concluded that the changes in the composition of microbiota lead to an increased capacity to extract calories from otherwise indigestible constituents, and to an increased production of SCFAs. These findings provide evidence that antibiotics perturb not only the composition of the GI microbiome but also its metabolic capabilities, specifically with respect to SCFAs.[127]
^There is substantial variation in microbiome composition and microbial concentrations by anatomical site.[92][93] Fluid from the human colon – which contains the highest concentration of microbes of any anatomical site – contains approximately one trillion (10^12) bacterial cells/ml.[92]
^abcdefghijSherwood, Linda; Willey, Joanne; Woolverton, Christopher J. (2013).Prescott's Microbiology. McGraw-Hill Education. pp. 713–721.ISBN978-0-07-340240-6.
^abcdefghijklmnopSommer, Felix; Bäckhed, Fredrik (2013). "The gut microbiota – masters of host development and physiology".Nature Reviews Microbiology.11 (4):227–238.doi:10.1038/nrmicro2974.PMID23435359.
^Shanahan, Fergus (2002). "The host–microbe interface within the gut".Best Practice & Research Clinical Gastroenterology.16 (6):915–931.doi:10.1053/bega.2002.0342.PMID12473298.
^Khanna, Sahil; Tosh, Pritish K (2014). "A Clinician's Primer on the Role of the Microbiome in Human Health and Disease".Mayo Clinic Proceedings.89 (1):107–114.doi:10.1016/j.mayocp.2013.10.011.PMID24388028.
^Zimmer, Carl (April 20, 2011)."Bacteria Divide People Into 3 Types, Scientists Say".The New York Times. RetrievedApril 21, 2011.a group of scientists now report just three distinct ecosystems in the guts of people they have studied.
^abSteinhoff, U (2005). "Who controls the crowd? New findings and old questions about the intestinal microflora".Immunology Letters.99 (1):12–16.doi:10.1016/j.imlet.2004.12.013.PMID15894105.
^abcdefGibson, Glenn R (2004). "Fibre and effects on probiotics (the prebiotic concept)".Clinical Nutrition Supplements.1 (2):25–31.doi:10.1016/j.clnu.2004.09.005.
^Miquel, S; Martín, R; Rossi, O; Bermúdez-Humarán, LG; Chatel, JM; Sokol, H; Thomas, M; Wells, JM; Langella, P (2013). "Faecalibacterium prausnitzii and human intestinal health".Current Opinion in Microbiology.16 (3):255–261.doi:10.1016/j.mib.2013.06.003.PMID23831042.
^Painter, Kelly; Cordell, Barbara J.; Sticco, Kristin L. (2024),"Auto-Brewery Syndrome",StatPearls, Treasure Island (FL): StatPearls Publishing,PMID30020718, retrieved2024-07-25
^Browne, Hilary P; Shao, Yan; Lawley, Trevor D (October 2022). "Mother–infant transmission of human microbiota".Current Opinion in Microbiology.69: 102173.doi:10.1016/j.mib.2022.102173.PMID35785616.
^Jonkers, Daisy M.A.E. (2016). "Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption".Best Practice & Research Clinical Gastroenterology.30 (2):161–172.doi:10.1016/j.bpg.2016.02.006.PMID27086883.
^Colella, M., Charitos, I. A., Ballini, A., Cafiero, C., Topi, S., Palmirotta, R., & Santacroce, L. (2023). Microbiota revolution: How gut microbes regulate our lives. World journal of gastroenterology, 29(28), 4368–4383.https://doi.org/10.3748/wjg.v29.i28.4368
^Colella, M., Charitos, I. A., Ballini, A., Cafiero, C., Topi, S., Palmirotta, R., & Santacroce, L. (2023). Microbiota revolution: How gut microbes regulate our lives. World journal of gastroenterology, 29(28), 4368–4383.https://doi.org/10.3748/wjg.v29.i28.4368
^Matamoros, Sebastien; Gras-Leguen, Christele; Le Vacon, Françoise; Potel, Gilles; de la Cochetiere, Marie-France (2013). "Development of intestinal microbiota in infants and its impact on health".Trends in Microbiology.21 (4):167–173.doi:10.1016/j.tim.2012.12.001.PMID23332725.
^Jiménez, Esther; Fernández, Leonides; Marín, María L; Martín, Rocío; Odriozola, Juan M; Nueno-Palop, Carmen; Narbad, Arjan; Olivares, Mónica; Xaus, Jordi; Rodríguez, Juan M (2005). "Isolation of Commensal Bacteria from Umbilical Cord Blood of Healthy Neonates Born by Cesarean Section".Current Microbiology.51 (4):270–274.doi:10.1007/s00284-005-0020-3.PMID16187156.
^Coppa, G. V.; Zampini, L.; Galeazzi, T.; Gabrielli, O. (2006). "Prebiotics in human milk: A review".Digestive and Liver Disease.38: S291–294.doi:10.1016/S1590-8658(07)60013-9.PMID17259094.
^Mady, Eman A.; Doghish, Ahmed S.; El-Dakroury, Walaa A.; Elkhawaga, Samy Y.; Ismail, Ahmed; El-Mahdy, Hesham A.; Elsakka, Elsayed G.E.; El-Husseiny, Hussein M. (July 2023). "Impact of the mother's gut microbiota on infant microbiome and brain development".Neuroscience & Biobehavioral Reviews.150: 105195.doi:10.1016/j.neubiorev.2023.105195.PMID37100161.
^Fanaro, S; Chierici, R; Guerrini, P; Vigi, V (2007). "Intestinal microflora in early infancy: Composition and development".Acta Paediatrica.92 (441):48–55.doi:10.1111/j.1651-2227.2003.tb00646.x.PMID14599042.
^Huang, L., Wen, Y., Li, Z., Li, H., Fan, B., Zeng, X., & Zhang, L. (2025). The gut microbiota modulates airway inflammation in allergic asthma through the gut–lung axis related immune modulation: A review. Biomolecules and Biomedicine, 25(4), 171–185. doi:10.17305/bjbms.2024.11280
^abYoon, My Young; Lee, Keehoon; Yoon, Sang Sun (2014). "Protective role of gut commensal microbes against intestinal infections".Journal of Microbiology.52 (12):983–989.doi:10.1007/s12275-014-4655-2.PMID25467115.
^abPeterson, Lance W; Artis, David (2014). "Intestinal epithelial cells: Regulators of barrier function and immune homeostasis".Nature Reviews Immunology.14 (3):141–153.doi:10.1038/nri3608.PMID24566914.
^Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (July 1999)."Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid".J. Biol. Chem.274 (31):21937–21942.doi:10.1074/jbc.274.31.21937.PMID10419516.S2CID6630247.[Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.
^Hopper, Christopher P.; De La Cruz, Ladie Kimberly; Lyles, Kristin V.; Wareham, Lauren K.; Gilbert, Jack A.; Eichenbaum, Zehava; Magierowski, Marcin; Poole, Robert K.; Wollborn, Jakob; Wang, Binghe (23 December 2020). "Role of Carbon Monoxide in Host–Gut Microbiome Communication".Chemical Reviews.120 (24):13273–13311.doi:10.1021/acs.chemrev.0c00586.PMID33089988.
^abcCho I, Blaser MJ (March 2012)."The human microbiome: at the interface of health and disease".Nature Reviews. Genetics.13 (4):260–270.doi:10.1038/nrg3182.PMC3418802.PMID22411464.The composition of the microbiome varies by anatomical site (Figure 1). The primary determinant of community composition is anatomical location: interpersonal variation is substantial23,24 and is higher than the temporal variability seen at most sites in a single individual25.
^Kumar, Kundan; Dhoke, Gaurao V.; Sharma, Ashok K.; Jaiswal, Shubham K.; Sharma, Vineet K. (July 2019). "Mechanistic elucidation of amphetamine metabolism by tyramine oxidase from human gut microbiota using molecular dynamics simulations".Journal of Cellular Biochemistry.120 (7):11206–11215.doi:10.1002/jcb.28396.PMID30701587.
^Sousa, Tiago; Paterson, Ronnie; Moore, Vanessa; Carlsson, Anders; Abrahamsson, Bertil; Basit, Abdul W (2008). "The gastrointestinal microbiota as a site for the biotransformation of drugs".International Journal of Pharmaceutics.363 (1–2):1–25.doi:10.1016/j.ijpharm.2008.07.009.PMID18682282.
^Boerner, Udo; Abbott, Seth; Roe, Robert L. (January 1975). "The Metabolism of Morphine and Heroin in Man".Drug Metabolism Reviews.4 (1):39–73.doi:10.3109/03602537508993748.PMID1204496.
^Dobkin, Jay F.; Saha, Jnan R.; Butler, Vincent P.; Neu, Harold C.; Lindenbaum, John (15 April 1983). "Digoxin-Inactivating Bacteria: Identification in Human Gut Flora".Science.220 (4594):325–327.doi:10.1126/science.6836275.PMID6836275.
^abYoo, Dae-Hyoung; Kim, In Sook; Van Le, Thi Kim; Jung, Il-Hoon; Yoo, Hye Hyun; Kim, Dong-Hyun (September 2014). "Gut Microbiota-Mediated Drug Interactions between Lovastatin and Antibiotics".Drug Metabolism and Disposition.42 (9):1508–1513.doi:10.1124/dmd.114.058354.PMID24947972.
^abSousa, Tiago; Paterson, Ronnie; Moore, Vanessa; Carlsson, Anders; Abrahamsson, Bertil; Basit, Abdul W. (November 2008). "The gastrointestinal microbiota as a site for the biotransformation of drugs".International Journal of Pharmaceutics.363 (1–2):1–25.doi:10.1016/j.ijpharm.2008.07.009.PMID18682282.
^Alexander, James L.; Wilson, Ian D.; Teare, Julian; Marchesi, Julian R.; Nicholson, Jeremy K.; Kinross, James M. (June 2017). "Gut microbiota modulation of chemotherapy efficacy and toxicity".Nature Reviews Gastroenterology & Hepatology.14 (6):356–365.doi:10.1038/nrgastro.2017.20.hdl:10044/1/77636.PMID28270698.
^Brandi, Giovanni; Dabard, Jean; Raibaud, Pierre; Di Battista, Monica; Bridonneau, Chantal; Pisi, Anna Maria; Morselli Labate, Antonio Maria; Pantaleo, Maria Abbondanza; De Vivo, Antonello; Biasco, Guido (15 February 2006). "Intestinal microflora and digestive toxicity of irinotecan in mice".Clinical Cancer Research.12 (4):1299–1307.doi:10.1158/1078-0432.CCR-05-0750.PMID16489087.
^Konopelski, Piotr; Ufnal, Marcin (14 September 2018). "Indoles - Gut Bacteria Metabolites of Tryptophan with Pharmacotherapeutic Potential".Current Drug Metabolism.19 (10):883–890.doi:10.2174/1389200219666180427164731.PMID29708069.
^abCollins, Stephanie L.; Stine, Jonathan G.; Bisanz, Jordan E.; Okafor, C. Denise; Patterson, Andrew D. (April 2023). "Bile acids and the gut microbiota: metabolic interactions and impacts on disease".Nature Reviews Microbiology.21 (4):236–247.doi:10.1038/s41579-022-00805-x.PMID36253479.
^abcDinan, Timothy G; Cryan, John F (2015). "The impact of gut microbiota on brain and behaviour".Current Opinion in Clinical Nutrition and Metabolic Care.18 (6):552–558.doi:10.1097/MCO.0000000000000221.PMID26372511.
^abcCarman, Robert J.; Simon, Mary Alice; Fernández, Haydée; Miller, Margaret A.; Bartholomew, Mary J. (2004). "Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats".Regulatory Toxicology and Pharmacology.40 (3):319–326.doi:10.1016/j.yrtph.2004.08.005.PMID15546686.
^abcSchneiderhan, J; Master-Hunter, T; Locke, A (2016). "Targeting gut flora to treat and prevent disease".The Journal of Family Practice.65 (1):34–38.PMID26845162.
^Ford, Alexander C; Quigley, Eamonn M M; Lacy, Brian E; Lembo, Anthony J; Saito, Yuri A; Schiller, Lawrence R; Soffer, Edy E; Spiegel, Brennan M R; Moayyedi, Paul (2014). "Efficacy of Prebiotics, Probiotics and Synbiotics in Irritable Bowel Syndrome and Chronic Idiopathic Constipation: Systematic Review and Meta-analysis".The American Journal of Gastroenterology.109 (10):1547–1561, quiz 1546, 1562.doi:10.1038/ajg.2014.202.PMID25070051.
^Levitt, Michael D.; Duane, William C. (4 May 1972). "Floating Stools — Flatus versus Fat".New England Journal of Medicine.286 (18):973–975.doi:10.1056/NEJM197205042861804.PMID5015442.
^Blandino, G; Inturri, R; Lazzara, F; Di Rosa, M; Malaguarnera, L (2016). "Impact of gut microbiota on diabetes mellitus".Diabetes & Metabolism.42 (5):303–315.doi:10.1016/j.diabet.2016.04.004.PMID27179626.
^Ipci, Kagan; Altıntoprak, Niyazi; Muluk, Nuray Bayar; Senturk, Mehmet; Cingi, Cemal (2016). "The possible mechanisms of the human microbiome in allergic diseases".European Archives of Oto-Rhino-Laryngology.274 (2):617–626.doi:10.1007/s00405-016-4058-6.PMID27115907.
^Mariño, Eliana; Richards, James L; McLeod, Keiran H; Stanley, Dragana; Yap, Yu Anne; Knight, Jacinta; McKenzie, Craig; Kranich, Jan; Oliveira, Ana Carolina; Rossello, Fernando J; Krishnamurthy, Balasubramanian; Nefzger, Christian M; Macia, Laurence; Thorburn, Alison; Baxter, Alan G; Morahan, Grant; Wong, Lee H; Polo, Jose M; Moore, Robert J; Lockett, Trevor J; Clarke, Julie M; Topping, David L; Harrison, Leonard C; Mackay, Charles R (May 2017). "Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes".Nature Immunology.18 (5):552–562.doi:10.1038/ni.3713.PMID28346408.
^Bettelli, Estelle; Carrier, Yijun; Gao, Wenda; Korn, Thomas; Strom, Terry B.; Oukka, Mohamed; Weiner, Howard L.; Kuchroo, Vijay K. (May 2006). "Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells".Nature.441 (7090):235–238.doi:10.1038/nature04753.PMID16648838.
^Brune, A. (2014). "Symbiotic digestion of lignocellulose in termite guts".Nature Reviews Microbiology.12 (3):168–180.doi:10.1038/nrmicro3182.PMID24487819.
^abMikaelyan, A.; Dietrich, C.; Köhler, T.; Poulsen, M.; Sillam-Dussès, D.; Brune, A. (2015). "Diet is the primary determinant of bacterial community structure in the guts of higher termites".Molecular Ecology.24 (20):5824–5895.Bibcode:2015MolEc..24.5284M.doi:10.1111/mec.13376.PMID26348261.
De Preter, Vicky; Hamer, Henrike M; Windey, Karen; Verbeke, Kristin (2011). "The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health?".Molecular Nutrition & Food Research.55 (1):46–57.doi:10.1002/mnfr.201000451.PMID21207512.