Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Berezin integral

From Wikipedia, the free encyclopedia
(Redirected fromGrassmann integral)
Integration for Grassmann variables

Inmathematical physics, theBerezin integral, named afterFelix Berezin, (also known asGrassmann integral, afterHermann Grassmann), is a way to define integration for functions ofGrassmann variables (elements of theexterior algebra). It is not anintegral in theLebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends thepath integral in physics, where it is used as a sum over histories forfermions.

Definition

[edit]

LetΛn{\displaystyle \Lambda ^{n}} be the exterior algebra of polynomials in anticommuting elementsθ1,,θn{\displaystyle \theta _{1},\dots ,\theta _{n}} over the field of complex numbers. (The ordering of the generatorsθ1,,θn{\displaystyle \theta _{1},\dots ,\theta _{n}} is fixed and defines the orientation of the exterior algebra.)

One variable

[edit]

TheBerezin integral over the sole Grassmann variableθ=θ1{\displaystyle \theta =\theta _{1}} is defined to be a linear functional

[af(θ)+bg(θ)]dθ=af(θ)dθ+bg(θ)dθ,a,bC{\displaystyle \int [af(\theta )+bg(\theta )]\,d\theta =a\int f(\theta )\,d\theta +b\int g(\theta )\,d\theta ,\quad a,b\in \mathbb {C} }

where we define

θdθ=1,dθ=0{\displaystyle \int \theta \,d\theta =1,\qquad \int \,d\theta =0}

so that :

θf(θ)dθ=0.{\displaystyle \int {\frac {\partial }{\partial \theta }}f(\theta )\,d\theta =0.}

These properties define the integral uniquely and imply

(aθ+b)dθ=a,a,bC.{\displaystyle \int (a\theta +b)\,d\theta =a,\quad a,b\in \mathbb {C} .}

Take note thatf(θ)=aθ+b{\displaystyle f(\theta )=a\theta +b} is the most general function ofθ{\displaystyle \theta } because Grassmann variables square to zero, sof(θ){\displaystyle f(\theta )} cannot have non-zero terms beyond linear order.

Multiple variables

[edit]

TheBerezin integral onΛn{\displaystyle \Lambda ^{n}} is defined to be the unique linear functionalΛndθ{\displaystyle \int _{\Lambda ^{n}}\cdot {\textrm {d}}\theta } with the following properties:

Λnθnθ1dθ=1,{\displaystyle \int _{\Lambda ^{n}}\theta _{n}\cdots \theta _{1}\,\mathrm {d} \theta =1,}
Λnfθidθ=0, i=1,,n{\displaystyle \int _{\Lambda ^{n}}{\frac {\partial f}{\partial \theta _{i}}}\,\mathrm {d} \theta =0,\ i=1,\dots ,n}

for anyfΛn,{\displaystyle f\in \Lambda ^{n},} where/θi{\displaystyle \partial /\partial \theta _{i}} means the left or the right partial derivative. These properties define the integral uniquely.

Notice that different conventions exist in the literature: Some authors define instead[1]

Λnθ1θndθ:=1.{\displaystyle \int _{\Lambda ^{n}}\theta _{1}\cdots \theta _{n}\,\mathrm {d} \theta :=1.}

The formula

Λnf(θ)dθ=Λ1(Λ1(Λ1f(θ)dθ1)dθ2)dθn{\displaystyle \int _{\Lambda ^{n}}f(\theta )\,\mathrm {d} \theta =\int _{\Lambda ^{1}}\left(\cdots \int _{\Lambda ^{1}}\left(\int _{\Lambda ^{1}}f(\theta )\,\mathrm {d} \theta _{1}\right)\,\mathrm {d} \theta _{2}\cdots \right)\mathrm {d} \theta _{n}}

expresses the Fubini law. On the right-hand side, the interior integral of a monomialf=g(θ)θ1{\displaystyle f=g(\theta ')\theta _{1}} is set to beg(θ),{\displaystyle g(\theta '),} whereθ=(θ2,,θn){\displaystyle \theta '=\left(\theta _{2},\ldots ,\theta _{n}\right)}; the integral off=g(θ){\displaystyle f=g(\theta ')} vanishes. The integral with respect toθ2{\displaystyle \theta _{2}} is calculated in the similar way and so on.

Change of Grassmann variables

[edit]

Letθi=θi(ξ1,,ξn), i=1,,n,{\displaystyle \theta _{i}=\theta _{i}\left(\xi _{1},\ldots ,\xi _{n}\right),\ i=1,\ldots ,n,} be odd polynomials in some antisymmetric variablesξ1,,ξn{\displaystyle \xi _{1},\ldots ,\xi _{n}}. The Jacobian is the matrix

D={θiξj, i,j=1,,n},{\displaystyle D=\left\{{\frac {\partial \theta _{i}}{\partial \xi _{j}}},\ i,j=1,\ldots ,n\right\},}

where/ξj{\displaystyle \partial /\partial \xi _{j}} refers to theright derivative ((θ1θ2)/θ2=θ1,(θ1θ2)/θ1=θ2{\displaystyle \partial (\theta _{1}\theta _{2})/\partial \theta _{2}=\theta _{1},\;\partial (\theta _{1}\theta _{2})/\partial \theta _{1}=-\theta _{2}}). The formula for the coordinate change reads

f(θ)dθ=f(θ(ξ))(detD)1dξ.{\displaystyle \int f(\theta )\,\mathrm {d} \theta =\int f(\theta (\xi ))(\det D)^{-1}\,\mathrm {d} \xi .}

Integrating even and odd variables

[edit]

Definition

[edit]

Consider now the algebraΛmn{\displaystyle \Lambda ^{m\mid n}} of functions of real commuting variablesx=x1,,xm{\displaystyle x=x_{1},\ldots ,x_{m}} and of anticommuting variablesθ1,,θn{\displaystyle \theta _{1},\ldots ,\theta _{n}} (which is called the free superalgebra of dimension(m|n){\displaystyle (m|n)}). Intuitively, a functionf=f(x,θ)Λmn{\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}} is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an elementf=f(x,θ)Λmn{\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}} is a function of the argumentx{\displaystyle x} that varies in an open setXRm{\displaystyle X\subset \mathbb {R} ^{m}} with values in the algebraΛn.{\displaystyle \Lambda ^{n}.} Suppose that this function is continuous and vanishes in the complement of a compact setKRm.{\displaystyle K\subset \mathbb {R} ^{m}.} The Berezin integral is the number

Λmnf(x,θ)dθdx=RmdxΛnf(x,θ)dθ.{\displaystyle \int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\mathbb {R} ^{m}}\,\mathrm {d} x\int _{\Lambda ^{n}}f(x,\theta )\,\mathrm {d} \theta .}

Change of even and odd variables

[edit]

Let a coordinate transformation be given byxi=xi(y,ξ), i=1,,m; θj=θj(y,ξ),j=1,,n,{\displaystyle x_{i}=x_{i}(y,\xi ),\ i=1,\ldots ,m;\ \theta _{j}=\theta _{j}(y,\xi ),j=1,\ldots ,n,} wherexi{\displaystyle x_{i}} are even andθj{\displaystyle \theta _{j}} are odd polynomials ofξ{\displaystyle \xi } depending on even variablesy.{\displaystyle y.} The Jacobian matrix of this transformation has the block form:

J=(x,θ)(y,ξ)=(ABCD),{\displaystyle \mathrm {J} ={\frac {\partial (x,\theta )}{\partial (y,\xi )}}={\begin{pmatrix}A&B\\C&D\end{pmatrix}},}

where each even derivative/yj{\displaystyle \partial /\partial y_{j}} commutes with all elements of the algebraΛmn{\displaystyle \Lambda ^{m\mid n}}; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocksA=x/y{\displaystyle A=\partial x/\partial y} andD=θ/ξ{\displaystyle D=\partial \theta /\partial \xi } are even and the entries of the off-diagonal blocksB=x/ξ, C=θ/y{\displaystyle B=\partial x/\partial \xi ,\ C=\partial \theta /\partial y} are odd functions, where/ξj{\displaystyle \partial /\partial \xi _{j}} again meanright derivatives.

When the functionD{\displaystyle D} is invertible inΛmn,{\displaystyle \Lambda ^{m\mid n},}


J=(x,θ)(y,ξ)=(ABCD)=(IB0D)(ABD1C0D1CI){\displaystyle \mathrm {J} ={\frac {\partial (x,\theta )}{\partial (y,\xi )}}={\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&B\\0&D\end{pmatrix}}{\begin{pmatrix}A-BD^{-1}C&0\\D^{-1}C&I\end{pmatrix}}}

So we have theBerezinian (orsuperdeterminant) of the matrixJ{\displaystyle \mathrm {J} }, which is the even function

BerJ=det(ABD1C)(detD)1{\displaystyle \operatorname {Ber} \mathrm {J} =\det \left(A-BD^{-1}C\right)(\det D)^{-1}}

Suppose that the real functionsxi=xi(y,0){\displaystyle x_{i}=x_{i}(y,0)} define a smooth invertible mapF:YX{\displaystyle F:Y\to X} of open setsX,Y{\displaystyle X,Y} inRm{\displaystyle \mathbb {R} ^{m}} and the linear part of the mapξθ=θ(y,ξ){\displaystyle \xi \mapsto \theta =\theta (y,\xi )} is invertible for eachyY.{\displaystyle y\in Y.} The general transformation law for the Berezin integral reads

Λmnf(x,θ)dθdx=Λmnf(x(y,ξ),θ(y,ξ))εBerJdξdy=Λmnf(x(y,ξ),θ(y,ξ))εdet(ABD1C)detDdξdy,{\displaystyle {\begin{aligned}&\int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon \operatorname {Ber} \mathrm {J} \,\mathrm {d} \xi \,\mathrm {d} y\\[6pt]={}&\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon {\frac {\det \left(A-BD^{-1}C\right)}{\det D}}\,\mathrm {d} \xi \,\mathrm {d} y,\end{aligned}}}

whereε=sgn(detx(y,0)/y{\displaystyle \varepsilon =\mathrm {sgn} (\det \partial x(y,0)/\partial y}) is the sign of the orientation of the mapF.{\displaystyle F.} The superpositionf(x(y,ξ),θ(y,ξ)){\displaystyle f(x(y,\xi ),\theta (y,\xi ))} is defined in the obvious way, if the functionsxi(y,ξ){\displaystyle x_{i}(y,\xi )} do not depend onξ.{\displaystyle \xi .} In the general case, we writexi(y,ξ)=xi(y,0)+δi,{\displaystyle x_{i}(y,\xi )=x_{i}(y,0)+\delta _{i},} whereδi,i=1,,m{\displaystyle \delta _{i},i=1,\ldots ,m} are even nilpotent elements ofΛmn{\displaystyle \Lambda ^{m\mid n}} and set

f(x(y,ξ),θ)=f(x(y,0),θ)+ifxi(x(y,0),θ)δi+12i,j2fxixj(x(y,0),θ)δiδj+,{\displaystyle f(x(y,\xi ),\theta )=f(x(y,0),\theta )+\sum _{i}{\frac {\partial f}{\partial x_{i}}}(x(y,0),\theta )\delta _{i}+{\frac {1}{2}}\sum _{i,j}{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x(y,0),\theta )\delta _{i}\delta _{j}+\cdots ,}

where theTaylor series is finite.

Useful formulas

[edit]

The following formulas for Gaussian integrals are used often in thepath integral formulation ofquantum field theory:

withA{\displaystyle A} being a complexn×n{\displaystyle n\times n} matrix.

withM{\displaystyle M} being a complex skew-symmetricn×n{\displaystyle n\times n} matrix, andPfM{\displaystyle \mathrm {Pf} \,M} being thePfaffian ofM{\displaystyle M}, which fulfills(PfM)2=detM{\displaystyle (\mathrm {Pf} \,M)^{2}=\det M}.

In the above formulas the notationdθ=dθ1dθn{\displaystyle d\theta =d\theta _{1}\cdots \,d\theta _{n}} is used. From these formulas, other useful formulas follow (See Appendix A in[2]) :

withA{\displaystyle A} being an invertiblen×n{\displaystyle n\times n} matrix. Note that these integrals are all in the form of apartition function.

History

[edit]

Berezin integral was probably first presented byDavid John Candlin in 1956.[3] Later it was independently discovered byFelix Berezin in 1966.[4]

Unfortunately Candlin's article failed to attract notice, and has been buried in oblivion. Berezin's work came to be widely known, and has almost been cited universally,[footnote 1] becoming an indispensable tool to treat quantum field theory of fermions by functional integral.

Other authors contributed to these developments, including the physicists Khalatnikov[9] (although his paper contains mistakes), Matthews and Salam,[10] and Martin.[11]

See also

[edit]

Footnote

[edit]
  1. ^For example many famous textbooks of quantum field theory cite Berezin.[5][6][7] One exception wasStanley Mandelstam who is said to have used to cite Candlin's work.[8]

References

[edit]
  1. ^Mirror symmetry. Hori, Kentaro. Providence, RI: American Mathematical Society. 2003. p. 155.ISBN 0-8218-2955-6.OCLC 52374327.{{cite book}}: CS1 maint: others (link)
  2. ^ S. Caracciolo, A. D. Sokal and A. Sportiello,Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians,Advances in Applied Mathematics,Volume 50, Issue 4,2013,https://doi.org/10.1016/j.aam.2012.12.001;https://arxiv.org/abs/1105.6270
  3. ^D.J. Candlin (1956). "On Sums over Trajectories for Systems With Fermi Statistics".Nuovo Cimento.4 (2):231–239.Bibcode:1956NCim....4..231C.doi:10.1007/BF02745446.S2CID 122333001.
  4. ^A. Berezin,The Method of Second Quantization, Academic Press, (1966)
  5. ^Itzykson, Claude; Zuber, Jean Bernard (1980).Quantum field theory. McGraw-Hill International Book Co. Chap 9, Notes.ISBN 0070320713.
  6. ^Peskin, Michael Edward; Schroeder, Daniel V. (1995).An introduction to quantum field theory. Reading: Addison-Wesley. Sec 9.5.
  7. ^Weinberg, Steven (1995).The Quantum Theory of Fields. Vol. 1. Cambridge University Press. Chap 9, Bibliography.ISBN 0521550017.
  8. ^Ron Maimon (2012-06-04)."What happened to David John Candlin?". physics.stackexchange.com. Retrieved2024-04-08.
  9. ^Khalatnikov, I.M. (1955)."Predstavlenie funkzij Grina v kvantovoj elektrodinamike v forme kontinualjnyh integralov" [The Representation of Green's Function in Quantum Electrodynamics in the Form of Continual Integrals](PDF).Journal of Experimental and Theoretical Physics (in Russian).28 (3): 633. Archived fromthe original(PDF) on 2021-04-19. Retrieved2019-06-23.
  10. ^Matthews, P. T.; Salam, A. (1955). "Propagators of quantized field".Il Nuovo Cimento.2 (1). Springer Science and Business Media LLC:120–134.Bibcode:1955NCimS...2..120M.doi:10.1007/bf02856011.ISSN 0029-6341.S2CID 120719536.
  11. ^Martin, J. L. (23 June 1959). "The Feynman principle for a Fermi system".Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.251 (1267). The Royal Society:543–549.Bibcode:1959RSPSA.251..543M.doi:10.1098/rspa.1959.0127.ISSN 2053-9169.S2CID 123545904.

Further reading

[edit]
  • Theodore Voronov:Geometric integration theory on Supermanifolds, Harwood Academic Publisher,ISBN 3-7186-5199-8
  • Berezin, Felix Alexandrovich:Introduction to Superanalysis, Springer Netherlands,ISBN 978-90-277-1668-2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Berezin_integral&oldid=1246442264"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp