Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Goursat tetrahedron

From Wikipedia, the free encyclopedia
For Euclidean 3-space, there are 3 simple and related Goursat tetrahedra, represented by [4,3,4], [4,31,1], and [3[4]]. They can be seen inside as points on and within a cube, {4,3}.

Ingeometry, aGoursat tetrahedron is atetrahedralfundamental domain of aWythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the3-sphere, Euclidean 3-space, and hyperbolic 3-space.Coxeter named them afterÉdouard Goursat who first looked into these domains. It is an extension of the theory ofSchwarz triangles for Wythoff constructions on the sphere.

Graphical representation

[edit]

AGoursat tetrahedron can be represented graphically by a tetrahedral graph, which is in a dual configuration of the fundamental domain tetrahedron. In the graph, each node represents a face (mirror) of the Goursat tetrahedron. Each edge is labeled by a rational value corresponding to the reflection order, being π/dihedral angle.

A 4-nodeCoxeter-Dynkin diagram represents this tetrahedral graph with order-2 edges hidden. If many edges are order 2, theCoxeter group can be represented by abracket notation.

Existence requires each of the 3-node subgraphs of this graph, (p q r), (p u s), (q t u), and (r s t), must correspond to aSchwarz triangle.

Extended symmetry

[edit]
The symmetry of a Goursat tetrahedron can betetrahedral symmetry of any subgroup symmetry shown in this tree, with subgroups below with subgroup indices labeled in the colored edges.

An extended symmetry of the Goursat tetrahedron is asemidirect product of theCoxeter group symmetry and thefundamental domain symmetry (the Goursat tetrahedron in these cases).Coxeter notation supports this symmetry as double-brackets like [Y[X]] means full Coxeter group symmetry [X], withY as a symmetry of the Goursat tetrahedron. IfY is a pure reflective symmetry, the group will represent another Coxeter group of mirrors. If there is only one simple doubling symmetry,Y can be implicit like [[X]] with either reflectional or rotational symmetry depending on the context.

The extended symmetry of each Goursat tetrahedron is also given below. The highest possible symmetry is that of the regulartetrahedron as [3,3], and this occurs in the prismatic point group [2,2,2] or [2[3,3]] and the paracompact hyperbolic group [3[3,3]].

SeeTetrahedron#Isometries of irregular tetrahedra for 7 lower symmetry isometries of the tetrahedron.

Whole number solutions

[edit]

The following sections show all of the whole number Goursat tetrahedral solutions on the 3-sphere, Euclidean 3-space, and Hyperbolic 3-space. The extended symmetry of each tetrahedron is also given.

The colored tetrahedal diagrams below arevertex figures foromnitruncated polytopes and honeycombs from each symmetry family. The edge labels represent polygonal face orders, which is double the Coxeter graph branch order. Thedihedral angle of an edge labeled2n is π/n. Yellow edges labeled 4 come from right angle (unconnected) mirror nodes in the Coxeter diagram.

3-sphere (finite) solutions

[edit]
Finite Coxeter groups isomorphisms

The solutions for the3-sphere with density 1 solutions are: (Uniform polychora)

Duoprisms andhyperprisms:
Coxeter group
and diagram
[2,2,2]
[p,2,2]
[p,2,q]
[p,2,p]
[3,3,2]
[4,3,2]
[5,3,2]
Group symmetry order168p4pq4p24896240
Tetrahedron
symmetry
[3,3]
(order 24)
[2]
(order 4)
[2]
(order 4)
[2+,4]
(order 8)
[ ]
(order 2)
[ ]+
(order 1)
[ ]+
(order 1)
Extended symmetry[(3,3)[2,2,2]]

=[4,3,3]
[2[p,2,2]]

=[2p,2,4]
[2[p,2,q]]

=[2p,2,2q]
[(2+,4)[p,2,p]]

=[2+[2p,2,2p]]
[1[3,3,2]]

=[4,3,2]
[4,3,2]
[5,3,2]
Extended symmetry order38432p16pq32p29696240
Graph typeLinearTridental
Coxeter group
and diagram
Pentachoric
[3,3,3]
Hexadecachoric
[4,3,3]
Icositetrachoric
[3,4,3]
Hexacosichoric
[5,3,3]
Demitesseractic
[31,1,1]
Vertex figure of omnitruncated uniform polychora
Tetrahedron
Group symmetry order120384115214400192
Tetrahedron
symmetry
[2]+
(order 2)
[ ]+
(order 1)
[2]+
(order 2)
[ ]+
(order 1)
[3]
(order 6)
Extended symmetry[2+[3,3,3]]
[4,3,3]
[2+[3,4,3]]
[5,3,3]
[3[31,1,1]]

=[3,4,3]
Extended symmetry order2403842304144001152

Euclidean (affine) 3-space solutions

[edit]
Euclidean Coxeter group isomorphisms

Density 1 solutions:Convex uniform honeycombs:

Graph typeLinear
Orthoscheme
Tri-dental
Plagioscheme
Loop
Cycloscheme
PrismaticDegenerate
Coxeter group
Coxeter diagram
[4,3,4]
[4,31,1]
[3[4]]
[4,4,2]
[6,3,2]
[3[3],2]
[∞,2,∞]
Vertex figure of omnitruncated honeycombs
Tetrahedron
Tetrahedron
Symmetry
[2]+
(order 2)
[ ]
(order 2)
[2+,4]
(order 8)
[ ]
(order 2)
[ ]+
(order 1)
[3]
(order 6)
[2+,4]
(order 8)
Extended symmetry[(2+)[4,3,4]]
[1[4,31,1]]

=[4,3,4]
[(2+,4)[3[4]]]

=[2+[4,3,4]]
[1[4,4,2]]

=[4,4,2]
[6,3,2]
[3[3[3],2]]

=[3,6,2]
[(2+,4)[∞,2,∞]]

=[1[4,4]]

Compact hyperbolic 3-space solutions

[edit]

Density 1 solutions: (Convex uniform honeycombs in hyperbolic space) (Coxeter diagram#Compact (Lannér simplex groups))

Rank 4 Lannér simplex groups
Graph typeLinearTri-dental
Coxeter group
Coxeter diagram
[3,5,3]
[5,3,4]
[5,3,5]
[5,31,1]
Vertex figures of omnitruncated honeycombs
Tetrahedron
Tetrahedron
Symmetry
[2]+
(order 2)
[ ]+
(order 1)
[2]+
(order 2)
[ ]
(order 2)
Extended symmetry[2+[3,5,3]]
[5,3,4]
[2+[5,3,5]]
[1[5,31,1]]

=[5,3,4]
Graph typeLoop
Coxeter group
Coxeter diagram
[(4,3,3,3)]
[(4,3)2]
[(5,3,3,3)]
[(5,3,4,3)]
[(5,3)2]
Vertex figures of omnitruncated honeycombs
Tetrahedron
Tetrahedron
Symmetry
[2]+
(order 2)
[2,2]+
(order 4)
[2]+
(order 2)
[2]+
(order 2)
[2,2]+
(order 4)
Extended symmetry[2+[(4,3,3,3)]]
[(2,2)+[(4,3)2]]
[2+[(5,3,3,3)]]
[2+[(5,3,4,3)]]
[(2,2)+[(5,3)2]]

Paracompact hyperbolic 3-space solutions

[edit]
This show subgroup relations of paracompact hyperbolic Goursat tetrahedra. Order 2 subgroups represent bisecting a Goursat tetrahedron with a plane of mirror symmetry

Density 1 solutions: (SeeCoxeter diagram#Paracompact (Koszul simplex groups))

Rank 4 Koszul simplex groups
Graph typeLinear graphs
Coxeter group
and diagram
[6,3,3]
[3,6,3]
[6,3,4]
[6,3,5]
[6,3,6]
[4,4,3]
[4,4,4]
Tetrahedron
symmetry
[ ]+
(order 1)
[2]+
(order 2)
[ ]+
(order 1)
[ ]+
(order 1)
[2]+
(order 2)
[ ]+
(order 1)
[2]+
(order 2)
Extended symmetry[6,3,3]
[2+[3,6,3]]
[6,3,4]
[6,3,5]
[2+[6,3,6]]
[4,4,3]
[2+[4,4,4]]
Graph typeLoop graphs
Coxeter group
and diagram
[3[ ]×[ ]]
[(4,4,3,3)]
[(43,3)]
[4[4]]
[(6,33)]
[(6,3,4,3)]
[(6,3,5,3)]
[(6,3)[2]]
Tetrahedron
symmetry
[2]
(order 4)
[ ]
(order 2)
[2]+
(order 2)
[2+,4]
(order 8)
[2]+
(order 2)
[2]+
(order 2)
[2]+
(order 2)
[2,2]+
(order 4)
Extended symmetry[2[3[ ]×[ ]]]

=[6,3,4]
[1[(4,4,3,3)]]

=[3,41,1]
[2+[(43,3)]]
[(2+,4)[4[4]]]

=[2+[4,4,4]]
[2+[(6,33)]]
[2+[(6,3,4,3)]]
[2+[(6,3,5,3)]]
[(2,2)+[(6,3)[2]]]
Graph typeTri-dentalLoop-n-tailSimplex
Coxeter group
and diagram
[6,31,1]
[3,41,1]
[41,1,1]
[3,3[3]]
[4,3[3]]
[5,3[3]]
[6,3[3]]
[3[3,3]]
Tetrahedron
symmetry
[ ]
(order 2)
[ ]
(order 2)
[3]
(order 6)
[ ]
(order 2)
[ ]
(order 2)
[ ]
(order 2)
[ ]
(order 2)
[3,3]
(order 24)
Extended symmetry[1[6,31,1]]

=[6,3,4]
[1[3,41,1]]

=[3,4,4]
[3[41,1,1]]

=[4,4,3]
[1[3,3[3]]]

=[3,3,6]
[1[4,3[3]]]

=[4,3,6]
[1[5,3[3]]]

=[5,3,6]
[1[6,3[3]]]

=[6,3,6]
[(3,3)[3[3,3]]]

=[6,3,3]

Rational solutions

[edit]

There are hundreds of rational solutions for the3-sphere, including these 6 linear graphs which generate theSchläfli-Hess polychora, and 11 nonlinear ones from Coxeter:

Linear graphs
  1. Density 4: [3,5,5/2]
  2. Density 6: [5,5/2,5]
  3. Density 20: [5,3,5/2]
  4. Density 66: [5/2,5,5/2]
  5. Density 76: [5,5/2,3]
  6. Density 191: [3,3,5/2]
Loop-n-tail graphs:
  1. Density 2:
  2. Density 3:
  3. Density 5:
  4. Density 8:
  5. Density 9:
  6. Density 14:
  7. Density 26:
  8. Density 30:
  9. Density 39:
  10. Density 46:
  11. Density 115:

In all, there are 59 sporadic tetrahedra with rational angles, and 2 infinite families.[1]

See also

[edit]

References

[edit]
  1. ^https://arxiv.org/abs/2011.14232 Space vectors forming rational angles, Kiran S. Kedlaya, Alexander Kolpakov, Bjorn Poonen, Michael Rubinstein, 2020
  • Regular Polytopes, (3rd edition, 1973), Dover edition,ISBN 0-486-61480-8 (page 280, Goursat's tetrahedra)[1]
  • Norman JohnsonThe Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966) He proved the enumeration of the Goursat tetrahedra by Coxeter is complete
  • Goursat, Edouard,Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales Scientifiques de l'École Normale Supérieure, Sér. 3, 6 (1889), (pp. 9–102, pp. 80–81 tetrahedra)
  • Klitzing, Richard."Dynkin Diagrams Goursat tetrahedra".
  • Norman Johnson,Geometries and Transformations (2018), Chapters 11,12,13
  • N. W. Johnson,R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz,The size of a hyperbolic Coxeter simplex, Transformation Groups 1999, Volume 4, Issue 4, pp 329–353[2]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Goursat_tetrahedron&oldid=1290398506"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp