Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gold(III) chloride

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
Chemical compound
This article is about the trichloride; it is not to be confused withchloroauric acid.

Gold(III) chloride
Crystal structure of AuCl3
Names
IUPAC name
Gold(III) trichloride
Other names
Auric chloride
Gold trichloride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.033.280Edit this at Wikidata
RTECS number
  • MD5420000
UNII
  • InChI=1S/Au.3ClH/h;3*1H/q+3;;;/p-3 checkY
    Key: RJHLTVSLYWWTEF-UHFFFAOYSA-K checkY
  • InChI=1/Au.3ClH/h;3*1H/q+3;;;/p-3
    Key: RJHLTVSLYWWTEF-DFZHHIFOAC
  • Cl[Au-]1(Cl)[Cl+][Au-]([Cl+]1)(Cl)Cl
Properties
AuCl3
(exists asAu2Cl6)
Molar mass606.6511 g/mol (forAu2Cl6)
AppearanceRed crystals (anhydrous); golden, yellow crystals (monohydrate)[1]
Density4.7 g/cm3
Melting point160 °C (320 °F; 433 K) (decomposes)
68 g/100 ml (20 °C)
Solubilitysoluble inether andethanol, slightly soluble in liquidammonia, insoluble inbenzene
−112·10−6 cm3/mol
Structure
monoclinic
P21/C
a = 6.57 Å,b = 11.04 Å,c = 6.44 Å
α = 90°, β = 113.3°, γ = 90°[2]
Square planar
Thermochemistry
−117.6 kJ/mol[3]
Hazards[4]
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS07: Exclamation mark
Warning
H315,H319,H335
P261,P264,P271,P280,P302+P352,P305+P351+P338
Related compounds
Otheranions
Gold(III) fluoride
Gold(III) bromide
Othercations
Gold(I) chloride
Silver(I) chloride
Platinum(II) chloride
Mercury(II) chloride
Supplementary data page
Gold(III) chloride (data page)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Gold(III) chloride, traditionally calledauric chloride, is aninorganic compound ofgold andchlorine with themolecular formulaAu2Cl6. The "III" in the name indicates that the gold has anoxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are bothhygroscopic and light-sensitive solids. This compound is adimer ofAuCl3. This compound has a few uses, such as an oxidizing agent and forcatalyzing variousorganic reactions.

Structure

[edit]

AuCl3 exists as achloride-bridgeddimer both as asolid andvapour, at least at low temperatures.[2]Gold(III) bromide behaves analogously.[1] The structure is similar to that ofiodine(III) chloride.

Each gold center issquare planar in gold(III) chloride, which is typical of a metal complex with ad8 electron count. The bonding inAuCl3 is considered somewhatcovalent.[1]

Properties

[edit]

Gold(III) chloride is adiamagnetic light-sensitive red crystalline solid that forms the orange monohydrate, AuCl3 · H2O; the anhydrous and monohydrate are bothhygroscopic. The anhydrous form absorbs moisture from the air to form the monohydrate which can be reversed by the addition ofthionyl chloride.[5]

Preparation

[edit]

Gold(III) chloride was first prepared in 1666 byRobert Boyle by the reaction of metallic gold andchlorine gas at 180 °C:[1][6][7]

2 Au + 3 Cl2 → Au2Cl6

This method is the most common method of preparing gold(III) chloride. It can also be prepared by reacting gold powder withiodine monochloride:[5]

2 Au + 6 ICl → 2 AuCl3 + 3 I2

Thechlorination reaction can be conducted in the presence oftetrabutylammonium chloride, the product being thelipophilic salt tetrabutylammonium tetrachloraurate.[8]

Another method of preparation is viachloroauric acid, which is obtained by first dissolving the gold powder inaqua regia to give chloroauric acid:[9]

Au + HNO3 + 4 HCl → H[AuCl4] + 2 H2O + NO

The resulting chloroauric acid is subsequently heated in an inert atmosphere at around 100 °C to giveAu2Cl6:[10][11]

2 H[AuCl4] → Au2Cl6 + 2 HCl

Reactions

[edit]
Concentrated aqueous solution of gold(III) chloride

Decomposition

[edit]

AnhydrousAuCl3 begins to decompose toAuCl (gold(I) chloride) at around 160 °C (320 °F); however, this, in turn, undergoesdisproportionation at higher temperatures to give gold metal and AuCl3:[5][10]

AuCl3 → AuCl + Cl2 (160 °C)
3 AuCl → AuCl3 + 2 Au (>210 °C)

Due to the disproportionation of AuCl, above 210 °C, most of the gold is in the form of elemental gold.[12][11]

Gold(III) chloride is more stable in a chlorine atmosphere and can sublime at around 200 °C without any decomposition. In a chlorine atmosphere, AuCl3 decomposes at 254 °C yielding AuCl which in turn decomposes at 282 °C to elemental gold.[2][13] This fact that no gold chlorides can exist above 400 °C is used in theMiller process.[14]

Other reactions

[edit]

AuCl3 is aLewis acid and readily formscomplexes. For example, it reacts withhydrochloric acid to form chloroauric acid (H[AuCl4]):[15]

HCl + AuCl3 → H+ + [AuCl4]

Chloroauric acid is the product formed when gold dissolves inaqua regia.[15]

On contact with water,AuCl3 formsacidic hydrates and theconjugate base[AuCl3(OH)]. AFe2+ ion may reduce it, causing elemental gold to beprecipitated from the solution.[1][16]

Other chloride sources, such asKCl, also convertAuCl3 into[AuCl4].Aqueous solutions ofAuCl3 react with an aqueous base such assodium hydroxide to form a precipitate ofAu(OH)3, which will dissolve in excess NaOH to form sodium aurate (NaAuO2). If gently heated,Au(OH)3 decomposes togold(III) oxide,Au2O3, and then to gold metal.[15][17][18][19]

Gold(III) chloride is the starting point for thechemical synthesis of many other gold compounds. For example, the reaction withpotassium cyanide produces the water-soluble complex,K[Au(CN)4]:[20]

AuCl3 + 4 KCN → K[Au(CN)4] + 3 KCl

Gold(III) fluoride can be also produced from gold(III) chloride by reacting it withbromine trifluoride.[15]

Gold(III) chloride reacts withbenzene under mild conditions (reaction times of a few minutes at room temperature) to produce the dimeric phenylgold(III) dichloride; a variety of otherarenes undergo a similar reaction:[21]

2 PhH + Au2Cl6 → [PhAuCl2]2 + 2 HCl

Gold(III) chloride reacts withcarbon monoxide in a variety of ways. For example, the reaction of anhydrous AuCl3 and carbon monoxide under SOCl2 producesgold(I,III) chloride with Au(CO)Cl as an intermediate:[22][23]

2 AuCl3 + 2 CO → Au4Cl8 + 2 COCl2

If carbon monoxide is in excess, Au(CO)Cl is produced instead.[24][25]

However, undertetrachloroethylene and at 120 °C, gold(III) chloride is first reduced to gold(I) chloride, which further reacts to form Au(CO)Cl. AuCl3 is also known to catalyze the production ofphosgene.[25][26]

Applications

[edit]

Gold(III) chloride has many uses in the laboratory, and primarily thrives in this environment.[5]

Organic synthesis

[edit]

Since 2003,AuCl3 has attracted the interest of organic chemists as a mild acid catalyst for various reactions,[27] although no transformations have been commercialised. Gold(III)salts, especiallyNa[AuCl4], provide an alternative tomercury(II) salts as catalysts for reactions involvingalkynes. An illustrative reaction is the hydration of terminal alkynes to produceacetyl compounds.[28]

Gold catalyses thealkylation of certainaromatic rings and the conversion offurans tophenols. Some alkynes undergoamination in the presence of gold(III) catalysts. For example, a mixture ofacetonitrile and gold(III) chloride catalyses the alkylation of2-methylfuran bymethyl vinyl ketone at the 5-position:[29]

The efficiency of thisorganogold reaction is noteworthy because both the furan and the ketone are sensitive to side reactions such as polymerisation under acidic conditions. In some cases where alkynes are present, phenols sometimes form (Ts is an abbreviation fortosyl):[29]

This reaction involves a rearrangement that gives a new aromatic ring.[30]

Another example of an AuCl3 catalyzed reaction is a hydroarylation, which is basically aFriedel-Crafts reaction using metal-alkyne complexes. Example, the reaction ofmesitylene withphenylacetylene:[31]

Gold(III) chloride can be used for the direct oxidation of primaryamines into ketones, such as the oxidation ofcyclohexylamine tocyclohexanone.[5]

This reaction is pH sensitive, requiring a mildly acidic pH to proceed, however, it does not require any additional steps.[5]

In the production of organogold(III) compounds, AuCl3 is used as a source of gold. A main example of this is the production of monoarylgold(III) complexes, which are produced by directelectrophilic auration of arenes by gold(III) chloride.[32]

Gold nanoparticles

[edit]

Gold(III) chloride is used in the synthesis ofgold nanoparticles, which are extensively studied for their unique size-dependent properties and applications in fields such as electronics, optics, and biomedicine. Gold nanoparticles can be prepared by reducing gold(III) chloride with a reducing agent such assodium tetrafluoroborate, followed by stabilization with a capping agent.[33]

Photography

[edit]

Gold(III) chloride has been used historically in thephotography industry as a sensitizer in the production of photographic films and papers. However, with the advent of digital photography, its use in this field has diminished.[34]

Natural occurrence

[edit]

This compound does not occur naturally; however, a similar compound with the formula AuO(OH,Cl)·nH2O is known as a product of natural gold oxidation.[35][36]

References

[edit]
  1. ^abcdeEgon Wiberg; Nils Wiberg; A. F. Holleman (2001).Inorganic Chemistry (101 ed.).Academic Press. pp. 1286–1287.ISBN 978-0-12-352651-9.
  2. ^abcE. S. Clark; D. H. Templeton; C. H. MacGillavry (1958)."The crystal structure of gold(III) chloride".Acta Crystallogr.11 (4):284–288.doi:10.1107/S0365110X58000694. Retrieved2010-05-21.
  3. ^Haynes, William M.; Lide, David R.; Bruno, Thomas J., eds. (2016).CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data (95th ed.). Boca Raton, Florida. p. 5-5.ISBN 978-1-4987-5428-6.OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link)
  4. ^"Gold Chloride".American Elements. RetrievedJuly 22, 2019.
  5. ^abcdefMichael J. Coghlan; Rene-Viet Nguyen; Chao-Jun Li; Daniel Pflästerer; A. Stephen K. Hashmi (2015). "Gold(III) Chloride".Encyclopedia of Reagents for Organic Synthesis. pp. 1–24.doi:10.1002/047084289X.rn00325.pub3.ISBN 9780470842898.
  6. ^Robert Boyle (1666).The origine of formes and qualities. p. 370.
  7. ^Thomas Kirke Rose (1895)."The dissociation of chloride of gold".Journal of the Chemical Society, Transactions.67:881–904.doi:10.1039/CT8956700881.
  8. ^Buckley, Robbie W.; Healy, Peter C.; Loughlin, Wendy A. (1997). "Reduction of [NBu4][AuCl4] to [NBu4][AuCl2] with Sodium Acetylacetonate".Australian Journal of Chemistry.50 (7): 775.doi:10.1071/C97029.
  9. ^Block, B. P. (1953). "Gold Powder and Potassium Tetrabromoaurate(III)".Inorganic Syntheses.Inorganic Syntheses. Vol. 4. pp. 14–17.doi:10.1002/9780470132357.ch4.ISBN 9780470132357.{{cite book}}:ISBN / Date incompatibility (help)
  10. ^abYa-jie Zheng; Wei Guo; Meng Bai; Xing-wen Yang (2006)."Preparation of chloroauric acid and its thermal decomposition".The Chinese Journal of Nonferrous Metals (in Chinese).16 (11):1976–1982. Archived fromthe original on March 27, 2024.
  11. ^abRobert G. Palgrave; Ivan P. Parkin (2007). "Aerosol Assisted Chemical Vapor Deposition of Gold and Nanocomposite Thin Films from Hydrogen Tetrachloroaurate(III)".Chemistry of Materials.19 (19). ACS Publications:4639–4647.doi:10.1021/cm0629006.
  12. ^Yiqin Chen; Xuezeng Tian; Wei Zeng; Xupeng Zhu; Hailong Hu; Huigao Duan (2015). "Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis".Journal of Colloid and Interface Science.439. Elsevier:21–27.Bibcode:2015JCIS..439...21C.doi:10.1016/j.jcis.2014.10.017.PMID 25463171.
  13. ^E.M.W. Janssen; J.C.W. Folmer; G.A. Wiegers (1974). "The preparation and crystal structure of gold monochloride, AuCl".Journal of the Less Common Metals.38 (1):71–76.doi:10.1016/0022-5088(74)90204-5.
  14. ^Hermann Renner; Günther Schlamp (2000). "Gold, Gold Alloys, and Gold Compounds".Ullmann's Encyclopedia of Industrial Chemistry. pp. 106–107.doi:10.1002/14356007.a12_499.ISBN 978-3-527-30673-2.
  15. ^abcdN. N. Greenwood; A. Earnshaw (1997).Chemistry of the Elements (2 ed.). Oxford, UK:Butterworth-Heinemann. pp. 1184–1185.ISBN 9780750633659.
  16. ^Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M.Advanced Inorganic Chemistry; John Wiley & Sons: New York, 1999; pp. 1101-1102
  17. ^TheMerck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals. 14. Ed., 2006, p. 780,ISBN 978-0-911910-00-1.
  18. ^H. Nechamkin,The Chemistry of the Elements,McGraw-Hill, New York, 1968, p. 222
  19. ^A. F. Wells,Structural Inorganic Chemistry, 5th ed.,Oxford University Press, Oxford, UK, 1984, p. 909
  20. ^Henry K. Lutz (1961)."Synthesis and Analyses of KAu(CN)4".Honors Theses. Union Digital Works.
  21. ^Li, Zigang; Brouwer, Chad; He, Chuan (2008-08-01). "Gold-Catalyzed Organic Transformations".Chemical Reviews.108 (8):3239–3265.doi:10.1021/cr068434l.ISSN 0009-2665.PMID 18613729.
  22. ^Daniela Belli Dell'Amico; Fausto Calderazzo; Fabio Marchetti; Stefano Merlino; Giovanni Perego (1977). "X-Ray crystal and molecular structure of Au4Cl8, the product of the reduction of Au2Cl6 by Au(CO)Cl".Journal of the Chemical Society, Chemical Communications:31–32.doi:10.1039/C39770000031.
  23. ^Daniela Belli Dell'Amico; Fausto Calderazzo; Fabio Marchetti; Stefano Merlino (1982). "Synthesis and molecular structure of [Au4Cl8], and the isolation of [Pt(CO)Cl5]– in thionyl chloride".Journal of the Chemical Society, Dalton Transactions (11):2257–2260.doi:10.1039/DT9820002257.
  24. ^Dell'Amico, D. Belli; Calderazzo, F.; Murray, H. H.;Fackler, J. P. (1986). "Carbonylchlorogold(I)".Inorganic Syntheses. Vol. 24. pp. 236–238.doi:10.1002/9780470132555.ch66.ISBN 9780470132555.
  25. ^abT.A. Ryan; E.A. Seddon; K.R. Seddon; C. Ryan (1996).Phosgene And Related Carbonyl Halides. Elsevier Science. pp. 242–243.ISBN 9780080538808.
  26. ^M. S. Kharasch; H. S. Isbell (1930). "The Chemistry of Organic Gold Compounds. I. Aurous Chloride Carbonyl and a Method of Linking Carbon to Carbon".Journal of the American Chemical Society.52 (7):2919–2927.doi:10.1021/ja01370a052.
  27. ^G. Dyker,An Eldorado for Homogeneous Catalysis?, inOrganic Synthesis Highlights V, H.-G. Schmaltz, T. Wirth (eds.), pp 48–55,Wiley-VCH, Weinheim, 2003
  28. ^Y. Fukuda; K. Utimoto (1991). "Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst".J. Org. Chem.56 (11): 3729.doi:10.1021/jo00011a058.
  29. ^abA. S. K. Hashmi; T. M. Frost; J. W. Bats (2000). "Highly Selective Gold-Catalyzed Arene Synthesis".J. Am. Chem. Soc.122 (46): 11553.doi:10.1021/ja005570d.
  30. ^A. Stephen; K. Hashmi; M. Rudolph; J. P. Weyrauch; M. Wölfle; W. Frey; J. W. Bats (2005). "Gold Catalysis: Proof of Arene Oxides as Intermediates in the Phenol Synthesis".Angewandte Chemie International Edition.44 (18):2798–801.doi:10.1002/anie.200462672.PMID 15806608.
  31. ^Reetz, M. T.; Sommer, K. (2003). "Gold-Catalyzed Hydroarylation of Alkynes".European Journal of Organic Chemistry.2003 (18):3485–3496.doi:10.1002/ejoc.200300260.
  32. ^Kharasch, M. S.; Isbell, Horace S. (1931-08-01). "The Chemistry of Organic Gold Compounds. III. Direct Introduction of Gold into the Aromatic Nucleus (Preliminary Communication)".Journal of the American Chemical Society.53 (8):3053–3059.doi:10.1021/ja01359a030.ISSN 0002-7863.
  33. ^M. Lin; C. M. Sorensen; K. J. Klabunde (1999). "Ligand-Induced Gold Nanocrystal Superlattice Formation in Colloidal Solution".Chemistry of Materials.11 (2):198–202.doi:10.1021/cm980665o.
  34. ^Philip Ellis (1975)."Gold in photography".Gold Bulletin.8:7–12.doi:10.1007/BF03215055.S2CID 136538890.
  35. ^"UM1995-16-O:AuClH".mindat.org. Retrieved27 April 2023.
  36. ^John L. Jambor; Nikolai N. Pertsev; Andrew C. Roberts (1996)."New Mineral Names"(PDF).American Mineralogist.81: 768.

External links

[edit]
Gold(-I)
Gold(I)
Organogold(I) compounds
Gold(II)
Gold(I,III)
Gold(III)
Aurates(III)
Gold(V)
Gold(VI)
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gold(III)_chloride&oldid=1338182486"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp