Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

gnu code

From Wikipedia, the free encyclopedia
Family of quantum error correcting codes
For the open-source software development project, seeGNU coding standards.

Inquantum information, thegnu code refers to a particular family ofquantum error correcting codes, with the special property of being invariant underpermutations of the qubits. Given integersg (thegap),n (the occupancy), andm (the length of the code), the two codewords are

|0L=even0n(n)2n1|Dgm{\displaystyle |0_{\rm {L}}\rangle =\sum _{\ell \,{\textrm {even}} \atop 0\leq \ell \leq n}{\sqrt {\frac {n \choose \ell }{2^{n-1}}}}|D_{g\ell }^{m}\rangle }
|1L=odd0n(n)2n1|Dgm{\displaystyle |1_{\rm {L}}\rangle =\sum _{\ell \,{\textrm {odd}} \atop 0\leq \ell \leq n}{\sqrt {\frac {n \choose \ell }{2^{n-1}}}}|D_{g\ell }^{m}\rangle }

where|Dkm{\displaystyle |D_{k}^{m}\rangle } are theDicke states consisting of a uniform superposition of all weight-k words onm qubits, e.g.

|D24=|0011+|0101+|1001+|0110+|1010+|11006{\displaystyle |D_{2}^{4}\rangle ={\frac {|0011\rangle +|0101\rangle +|1001\rangle +|0110\rangle +|1010\rangle +|1100\rangle }{\sqrt {6}}}}

The real parameteru=mgn{\displaystyle u={\frac {m}{gn}}} scales the length of the code. The numberu{\displaystyle u} needs to be at least 1. The lengthm=gnu{\displaystyle m=gnu}, hence the name of the code. The distance of the code is the minimum ofg{\displaystyle g} andn{\displaystyle n}. Forg=n{\displaystyle g=n} andu1{\displaystyle u\geq 1}, thegnu code is capable of correctingg1{\displaystyle g-1}erasure errors,[1] ordeletion errors.[2] The code can also correct up to(g1)/2{\displaystyle \lfloor (g-1)/2\rfloor } corrupted qubits from the property of the distance.

References

[edit]
  1. ^Ouyang, Yingkai (2014-12-10). "Permutation-invariant quantum codes".Physical Review A.90 (6) 062317.arXiv:1302.3247.Bibcode:2014PhRvA..90f2317O.doi:10.1103/physreva.90.062317.ISSN 1050-2947.S2CID 119114455.
  2. ^Ouyang, Yingkai (2021-02-04). "Permutation-invariant quantum coding for quantum deletion channels".arXiv:2102.02494v1 [quant-ph].
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gnu_code&oldid=1318177255"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp