Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Geometric stable distribution

From Wikipedia, the free encyclopedia
Probability distribution
Geometric stable
Parameters

α(0,2]{\displaystyle \alpha \in (0,2]} — stability parameter
β[1,1]{\displaystyle \beta \in [-1,1]} — skewness parameter (note thatskewness is undefined)
λ(0,){\displaystyle \lambda \in (0,\infty )}scale parameter

μ(,){\displaystyle \mu \in (-\infty ,\infty )}location parameter
SupportxR{\displaystyle x\in \mathbb {R} }, orx[μ,){\displaystyle x\in [\mu ,\infty )} ifα<1{\displaystyle \alpha <1} andβ=1{\displaystyle \beta =1}, orx(,μ]{\displaystyle x\in (-\infty ,\mu ]} ifα<1{\displaystyle \alpha <1} andβ=1{\displaystyle \beta =-1}
PDFnot analytically expressible, except for some parameter values
CDFnot analytically expressible, except for certain parameter values
Medianμ{\displaystyle \mu } whenβ=0{\displaystyle \beta =0}
Modeμ{\displaystyle \mu } whenβ=0{\displaystyle \beta =0}
Variance2λ2{\displaystyle 2\lambda ^{2}} whenα=2{\displaystyle \alpha =2}, otherwise infinite
Skewness0{\displaystyle 0} whenα=2{\displaystyle \alpha =2}, otherwise undefined
Excess kurtosis3{\displaystyle 3} whenα=2{\displaystyle \alpha =2}, otherwise undefined
MGFundefined
CF

 [1+λα|t|αωiμt]1{\displaystyle \ \left[1+\lambda ^{\alpha }\vert t\vert ^{\alpha }\omega -i\mu t\right]^{-1}},

whereω={1iβtanπα2sign(t)if α11+i2πβlog|t|sign(t)if α=1{\displaystyle \omega ={\begin{cases}1-i\beta \tan {\tfrac {\pi \alpha }{2}}\,{\textrm {sign}}(t)&{\text{if }}\alpha \neq 1\\1+i{\tfrac {2}{\pi }}\beta \log \vert t\vert \,{\textrm {sign}}(t)&{\text{if }}\alpha =1\end{cases}}}

Ageometric stable distribution orgeo-stable distribution is a type ofleptokurticprobability distribution.[1] These distributions are analogues for stable distributions for the case when the number of summands is random, independent of the distribution of summand, and having geometric distribution. The geometric stable distribution may be symmetric or asymmetric. A symmetric geometric stable distribution is also referred to as aLinnik distribution.[2] TheLaplace distribution andasymmetric Laplace distribution are special cases of the geometric stable distribution. TheMittag-Leffler distribution is also a special case of a geometric stable distribution.[3]

The geometric stable distribution has applications in finance theory.[4][5][6][7]

Characteristics

[edit]

For most geometric stable distributions, theprobability density function andcumulative distribution function have no closed form. However, a geometric stable distribution can be defined by itscharacteristic function, which has the form:[8]

φ(t;α,β,λ,μ)=[1+λα|t|αωiμt]1{\displaystyle \varphi (t;\alpha ,\beta ,\lambda ,\mu )=[1+\lambda ^{\alpha }|t|^{\alpha }\omega -i\mu t]^{-1}}

whereω={1iβtan(πα2)sign(t)if α11+i2πβlog|t|sign(t)if α=1{\displaystyle \omega ={\begin{cases}1-i\beta \tan \left({\tfrac {\pi \alpha }{2}}\right)\,\operatorname {sign} (t)&{\text{if }}\alpha \neq 1\\1+i{\tfrac {2}{\pi }}\beta \log |t|\operatorname {sign} (t)&{\text{if }}\alpha =1\end{cases}}}.

The parameterα{\displaystyle \alpha }, which must be greater than 0 and less than or equal to 2, is the shape parameter or index of stability, which determines how heavy the tails are.[8] Lowerα{\displaystyle \alpha } corresponds toheavier tails.

The parameterβ{\displaystyle \beta }, which must be greater than or equal to −1 and less than or equal to 1, is the skewness parameter.[8] Whenβ{\displaystyle \beta } is negative the distribution is skewed to the left and whenβ{\displaystyle \beta } is positive the distribution is skewed to the right. Whenβ{\displaystyle \beta } is zero the distribution is symmetric, and the characteristic function reduces to:[8]

φ(t;α,0,λ,μ)=[1+λα|t|αiμt]1{\displaystyle \varphi (t;\alpha ,0,\lambda ,\mu )=[1+\lambda ^{\alpha }|t|^{\alpha }-i\mu t]^{-1}}.

The symmetric geometric stable distribution withμ=0{\displaystyle \mu =0} is also referred to as a Linnik distribution.[9] A completely skewed geometric stable distribution, that is, withβ=1{\displaystyle \beta =1},α<1{\displaystyle \alpha <1}, with0<μ<1{\displaystyle 0<\mu <1} is also referred to as a Mittag-Leffler distribution.[10] Althoughβ{\displaystyle \beta } determines the skewness of the distribution, it should not be confused with the typicalskewness coefficient or 3rdstandardized moment, which in most circumstances is undefined for a geometric stable distribution.

The parameterλ>0{\displaystyle \lambda >0} is referred to as thescale parameter, andμ{\displaystyle \mu } is the location parameter.[8]

Whenα{\displaystyle \alpha } = 2,β{\displaystyle \beta } = 0 andμ{\displaystyle \mu } = 0 (i.e., a symmetric geometric stable distribution or Linnik distribution withα{\displaystyle \alpha }=2), the distribution becomes the symmetricLaplace distribution with mean of 0,[9] which has aprobability density function of:

f(x0,λ)=12λexp(|x|λ){\displaystyle f(x\mid 0,\lambda )={\frac {1}{2\lambda }}\exp \left(-{\frac {|x|}{\lambda }}\right)\,\!}.

The Laplace distribution has avariance equal to2λ2{\displaystyle 2\lambda ^{2}}. However, forα<2{\displaystyle \alpha <2} the variance of the geometric stable distribution is infinite.

Relationship to stable distributions

[edit]

Astable distribution has the property that ifX1,X2,,Xn{\displaystyle X_{1},X_{2},\dots ,X_{n}} are independent, identically distributed random variables taken from such a distribution, the sumY=an(X1+X2++Xn)+bn{\displaystyle Y=a_{n}(X_{1}+X_{2}+\cdots +X_{n})+b_{n}} has the same distribution as theXi{\displaystyle X_{i}}'s for somean{\displaystyle a_{n}} andbn{\displaystyle b_{n}}.

Geometric stable distributions have a similar property, but where the number of elements in the sum is ageometrically distributed random variable. IfX1,X2,{\displaystyle X_{1},X_{2},\dots } areindependent and identically distributed random variables taken from a geometric stable distribution, thelimit of the sumY=aNp(X1+X2++XNp)+bNp{\displaystyle Y=a_{N_{p}}(X_{1}+X_{2}+\cdots +X_{N_{p}})+b_{N_{p}}} approaches the distribution of theXi{\displaystyle X_{i}}'s for some coefficientsaNp{\displaystyle a_{N_{p}}} andbNp{\displaystyle b_{N_{p}}} as p approaches 0, whereNp{\displaystyle N_{p}} is a random variable independent of theXi{\displaystyle X_{i}}'s taken from a geometric distribution with parameter p.[5] In other words:

Pr(Np=n)=(1p)n1p.{\displaystyle \Pr(N_{p}=n)=(1-p)^{n-1}\,p\,.}

The distribution is strictly geometric stable only if the sumY=a(X1+X2++XNp){\displaystyle Y=a(X_{1}+X_{2}+\cdots +X_{N_{p}})} equals the distribution of theXi{\displaystyle X_{i}}'s for some a.[4]

There is also a relationship between the stable distribution characteristic function and the geometric stable distribution characteristic function. The stable distribution has a characteristic function of the form:

Φ(t;α,β,λ,μ)=exp[ itμ|λt|α(1iβsign(t)Ω) ],{\displaystyle \Phi (t;\alpha ,\beta ,\lambda ,\mu )=\exp \left[~it\mu \!-\!|\lambda t|^{\alpha }\,(1\!-\!i\beta \operatorname {sign} (t)\Omega )~\right],}

where

Ω={tanπα2if α1,2πlog|t|if α=1.{\displaystyle \Omega ={\begin{cases}\tan {\tfrac {\pi \alpha }{2}}&{\text{if }}\alpha \neq 1,\\-{\tfrac {2}{\pi }}\log |t|&{\text{if }}\alpha =1.\end{cases}}}

The geometric stable characteristic function can be expressed in terms of a stable characteristic function as:[11]

φ(t;α,β,λ,μ)=[1log(Φ(t;α,β,λ,μ))]1.{\displaystyle \varphi (t;\alpha ,\beta ,\lambda ,\mu )=[1-\log(\Phi (t;\alpha ,\beta ,\lambda ,\mu ))]^{-1}.}

See also

[edit]

References

[edit]
  1. ^Geometric stable distributions were introduced inKlebanov, L. B.; Maniya, G. M.; Melamed, I. A. (1985). "A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables".Theory of Probability & Its Applications.29 (4):791–794.doi:10.1137/1129104.
  2. ^D.O. Cahoy (2012). "An estimation procedure for the Linnik distribution".Statistical Papers.53 (3):617–628.arXiv:1410.4093.doi:10.1007/s00362-011-0367-4.
  3. ^D.O. Cahoy; V.V. Uhaikin; W.A. Woyczyński (2010). "Parameter estimation for fractional Poisson processes".Journal of Statistical Planning and Inference.140 (11):3106–3120.arXiv:1806.02774.doi:10.1016/j.jspi.2010.04.016.
  4. ^abRachev, S.; Mittnik, S. (2000).Stable Paretian Models in Finance. Wiley. pp. 34–36.ISBN 978-0-471-95314-2.
  5. ^abTrindade, A.A.; Zhu, Y.; Andrews, B. (May 18, 2009)."Time Series Models With Asymmetric Laplace Innovations"(PDF). pp. 1–3. Retrieved2011-02-27.
  6. ^Meerschaert, M.; Sceffler, H."Limit Theorems for Continuous Time Random Walks"(PDF). p. 15. Archived fromthe original(PDF) on 2011-07-19. Retrieved2011-02-27.
  7. ^Kozubowski, T. (1999)."Geometric Stable Laws: Estimation and Applications".Mathematical and Computer Modelling.29 (10–12):241–253.doi:10.1016/S0895-7177(99)00107-7.
  8. ^abcdeKozubowski, T.; Podgorski, K.; Samorodnitsky, G."Tails of Lévy Measure of Geometric Stable Random Variables"(PDF). pp. 1–3. Retrieved2011-02-27.
  9. ^abKotz, S.; Kozubowski, T.; Podgórski, K. (2001).The Laplace distribution and generalizations. Birkhäuser. pp. 199–200.ISBN 978-0-8176-4166-5.
  10. ^Burnecki, K.; Janczura, J.; Magdziarz, M.; Weron, A. (2008)."Can One See a Competition Between Subdiffusion and Lévy Flights? A Care of Geometric Stable Noise"(PDF).Acta Physica Polonica B.39 (8): 1048. Archived fromthe original(PDF) on 2011-06-29. Retrieved2011-02-27.
  11. ^"Geometric Stable Laws Through Series Representations"(PDF).Serdica Mathematical Journal.25: 243. 1999. Retrieved2011-02-28.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Geometric_stable_distribution&oldid=1306725092"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp