Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Genistein

From Wikipedia, the free encyclopedia
Not to be confused withGenistin.
This articleneeds morereliable medical references forverification or relies too heavily onprimary sources. Please review the contents of the article andadd the appropriate references if you can. Unsourced or poorly sourced material may be challenged andremoved.Find sources: "Genistein" – news ·newspapers ·books ·scholar ·JSTOR(June 2012)

Genistein
Genistein molecule
Names
IUPAC name
4′,5,7-Trihydroxyisoflavone
Systematic IUPAC name
5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
Identifiers
3D model (JSmol)
263823
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.006.524Edit this at Wikidata
EC Number
  • 207-174-9
KEGG
UNII
  • InChI=1S/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H checkY
    Key: TZBJGXHYKVUXJN-UHFFFAOYSA-N checkY
  • InChI=1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H
    Key: TZBJGXHYKVUXJN-UHFFFAOYAH
  • Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O
Properties
C15H10O5
Molar mass270.240 g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Genistein (C15H10O5) is a plant-derived,aglyconeisoflavone.[1] Genistein has the highest content of all isoflavones insoybeans and soy products, such astempeh. As a type ofphytoestrogen, genistein hasestrogenic activity in vitro; consequently, its long-term intake by consuming soy products may affect reproductive organs, such as theuterus andbreast.[1]

It was first isolated in 1899 from thedyer's broom,Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that ofprunetol. It was chemically synthesized in 1928.[2] Genistein is a primary secondary metabolite of theTrifolium species andGlycine max (soy).

Natural occurrences

[edit]

Isoflavones, such as genistein anddaidzein, occur in soybeans and various other plants, includinglupin,fava beans,kudzu,psoralea,[3][4]Flemingia vestita,[5] andcoffee.[6] It is present inred clover.[7]

In soybean products

[edit]

Isoflavone intake from consuming soy products may be as high as 50 mg per day in Asian cuisines, although it is considerably lower in Western diets.[1] Genistein has the highest percentage among isoflavones in various soy foods, such as protein concentrate, mature soybeans, and tempeh.[1]

Dietary supplements andinfant formulas containing isoflavoneextracts are marketed in some countries.[1]

Metabolism, bioavailability, and safety

[edit]

Pharmacokinetics studies indicate that genistein blood concentrations peak about 6 hours after a meal containing isoflavones, which arehydrolized in thesmall intestine andcolon.[1]

The colonicmicrobiota duringdigestion influences themetabolism of genistein and other isoflavones, converting them to metabolites having potential biological effects, such as the extent of estrogenic activity.[1]

Although soy products aregenerally recognized as safe (GRAS),[8] a GRAS determination specifically for genistein has not been reported.

Potential for estrogenic activity

[edit]

Because soy isoflavones have similar chemical structure to17-β-estradiol, the potential for genistein as an estrogenic (hormone-like)signaling molecule that binds to estrogen receptors within cells, mimicking the action ofestrogen, has been the subject of research. Estrogenic effects by genistein may affect the risk of hormone-associated cancers in reproductive tissues, such as the breast,uterus orprostate gland, while it may also influencebone density and levels ofblood lipids.[1]

Human research

[edit]

Although the potential for genistein to have diverse biological activity in humans has been extensively studied, there is only limited evidence of its specific effects.[8]

In a 2011-12 analysis, a scientific panel for theEuropean Food Safety Authority found that there was no evidence for acause-and-effect relationship between the consumption of genistein with other soy isoflavones and 1) protection ofDNA,proteins and lipids fromoxidative damage, 2) maintenance of normal bloodLDL-cholesterol concentrations, 3) changes in vascular function associated with menopause, 4) normal hair growth or 5) bone mineral density.[9][10] The panel further concluded that there was insufficient evidence that soy isoflavones could affect normal skin tone, respiratory functions, cardiovascular health, or prostate cancer.[9]

There is preliminary evidence that consuming soy foods rich in genistein and isoflavones may improvecardiovascular function inpostmenopausal women[1] and lower the risk ofbreast cancer in premenopausal and postmenopausal women.[11] Some studies indicate that supplementation with genistein and soy isoflavones may reducehot flashes andnight sweats during menopause, while there is insufficient evidence for an effect onosteoporosis andcognitive function.[1]

Laboratory research

[edit]

In vitro, genistein is anagonist of theG protein-coupled estrogen receptor,[12][13] and binds to and activates all threeperoxisome proliferator-activated receptor isoforms, α, δ, and γ.[14][15] Genistein is atyrosine kinase inhibitor, mostly ofepidermal growth factor receptors.[1]

Anthelmintic

[edit]

The root-tuber peel extract ofFlemingia vestita is atraditional medicineanthelmintic of theKhasi tribes of India. In research, genistein was found to be the major isoflavone responsible for adeworming property.[5][16] Genistein was subsequently demonstrated to be effective againstintestinal parasites, such as thepoultrycestodeRaillietina echinobothrida,[16] theporktrematodeFasciolopsis buski,[17] and thesheep liver flukeFasciola hepatica.[18] It exerts its anthelmintic activity by inhibitingenzymes ofglycolysis andglycogenolysis in the parasites.[19][20]

Related compounds

[edit]

See also

[edit]

References

[edit]
  1. ^abcdefghijkl"Soy isoflavones". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2025. Retrieved9 April 2025.
  2. ^Walter ED (1941). "Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans".Journal of the American Chemical Society.63 (12):3273–76.Bibcode:1941JAChS..63.3273W.doi:10.1021/ja01857a013.
  3. ^Coward L, Barnes NC, Setchell KD, et al. (1993). "Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets".Journal of Agricultural and Food Chemistry.41 (11):1961–7.Bibcode:1993JAFC...41.1961C.doi:10.1021/jf00035a027.
  4. ^Kaufman PB, Duke JA, Brielmann H, et al. (1997). "A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health".The Journal of Alternative and Complementary Medicine.3 (1):7–12.CiteSeerX 10.1.1.320.9747.doi:10.1089/acm.1997.3.7.PMID 9395689.
  5. ^abRao HS, Reddy KS (1991). "Isoflavones fromFlemingia vestita".Fitoterapia.62 (5): 458.
  6. ^Alves RC, Almeida IM, Casal S, et al. (2010). "Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method".Journal of Agricultural and Food Chemistry.58 (5):3002–7.Bibcode:2010JAFC...58.3002A.doi:10.1021/jf9039205.PMID 20131840.
  7. ^"Genistein". Global Substance Registration System, US Food and Drug Administration. 2024. Retrieved11 April 2025.
  8. ^ab"Soy". Drugs.com. 12 November 2024. Retrieved11 April 2025.
  9. ^abEFSA Panel on Dietetic Products, Nutrition and Allergies (2011)."Scientific Opinion on the substantiation of health claims related to soy isoflavones and protection of DNA, proteins and lipids from oxidative damage (ID 1286, 4245), maintenance of normal blood LDL-cholesterol concentrations (ID 1135, 1704a, 3093a), reduction of vasomotor symptoms associated with menopause (ID 1654, 1704b, 2140, 3093b, 3154, 3590), maintenance of normal skin tonicity (ID 1704a), contribution to normal hair growth (ID 1704a, 4254), "cardiovascular health" (ID 3587), treatment of prostate cancer (ID 3588), and "upper respiratory tract" (ID 3589) pursuant to Article 13(1) of Regulation (EC) No 1924/2006".EFSA Journal.9 (7): 2264.doi:10.2903/j.efsa.2011.2264.
  10. ^EFSA Panel on Dietetic Products, Nutrition and Allergies (2012)."Scientific Opinion on the substantiation of health claims related to soy isoflavones and maintenance of bone mineral density (ID 1655) and reduction of vasomotor symptoms associated with menopause (ID 1654, 1704, 2140, 3093, 3154, 3590) (further assessment) pursuant toArticle 13(1) of Regulation (EC) No 1924/2006".EFSA Journal.10 (8): 2847.doi:10.2903/j.efsa.2012.2847.
  11. ^Boutas I, Kontogeorgi A, Dimitrakakis C, et al. (2022)."Soy Isoflavones and Breast Cancer Risk: A Meta-analysis".In Vivo.36 (2):556–562.doi:10.21873/invivo.12737.PMC 8931889.PMID 35241506.
  12. ^Prossnitz ER, Arterburn JB (July 2015)."International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators".Pharmacol. Rev.67 (3):505–40.doi:10.1124/pr.114.009712.PMC 4485017.PMID 26023144.
  13. ^Prossnitz ER, Barton M (2014)."Estrogen biology: New insights into GPER function and clinical opportunities".Molecular and Cellular Endocrinology.389 (1–2):71–83.doi:10.1016/j.mce.2014.02.002.ISSN 0303-7207.PMC 4040308.PMID 24530924.
  14. ^Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. (2014)."Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review".Biochemical Pharmacology.92 (1):73–89.doi:10.1016/j.bcp.2014.07.018.PMC 4212005.PMID 25083916.
  15. ^Dang ZC, Audinot V, Papapoulos SE, et al. (2002)."Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein".Journal of Biological Chemistry.278 (2):962–7.doi:10.1074/jbc.M209483200.PMID 12421816.
  16. ^abTandon V, Pal P, Roy B, et al. (1997)."In vitro anthelmintic activity of root-tuber extract ofFlemingia vestita, an indigenous plant in Shillong, India".Parasitology Research.83 (5):492–8.doi:10.1007/s004360050286.PMID 9197399.S2CID 25086153.
  17. ^Kar PK, Tandon V, Saha N (2002)."Anthelmintic efficacy ofFlemingia vestita: Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite,Fasciolopsis buski".Parasitology International.51 (3):249–57.doi:10.1016/S1383-5769(02)00032-6.PMID 12243779.
  18. ^Toner E, Brennan GP, Wells K, et al. (2008). "Physiological and morphological effects of genistein against the liver fluke,Fasciola hepatica".Parasitology.135 (10):1189–203.doi:10.1017/S0031182008004630.PMID 18771609.S2CID 6525410.
  19. ^Tandon V, Das B, Saha N (2003). "Anthelmintic efficacy ofFlemingia vestita (Fabaceae): Effect of genistein on glycogen metabolism in the cestode,Raillietina echinobothrida".Parasitology International.52 (2):179–86.doi:10.1016/S1383-5769(03)00006-0.PMID 12798931.
  20. ^Das B, Tandon V, Saha N (2004)."Anthelmintic efficacy ofFlemingia vestita (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode,Raillietina echinobothrida".Parasitology Research.93 (4):253–61.doi:10.1007/s00436-004-1122-8.PMID 15138892.S2CID 9491127.
Wikimedia Commons has media related toGenistein.
Phytoestrogens
Flavanones
Flavones
Prenylflavonoids
Isoflavones
Isoflavanes
Dihydrochalcones
Isoflavenes
Coumestans
Lignans
Flavonolignans
Flavonols
Others
Mycoestrogens
Derivatives
Synthetic
Metalloestrogens
Isoflavones and theirglycosides
Isoflavones
O-methylated isoflavones
Glycosides
Prenylated isoflavones
Pyranoisoflavones
Derivatives
Synthetic
Receptor
(ligands)
CB1Tooltip Cannabinoid receptor type 1
Agonists
(abridged,
full list)
Inverse agonists
Antagonists
CB2Tooltip Cannabinoid receptor type 2
Agonists
Antagonists
NAGly
(
GPR18)
Agonists
Antagonists
GPR55
Agonists
Antagonists
GPR119
Agonists
Transporter
(modulators)
eCBTsTooltip Endocannabinoid transporter
Enzyme
(modulators)
FAAHTooltip Fatty acid amide hydrolase
MAGL
ABHD6
ABHD12
Others
  • Others:2-PG(directly potentiates activity of 2-AG at CB1 receptor)
  • ARN-272(FAAH-like anandamide transporter inhibitor)
See also
Receptor/signaling modulators
Cannabinoids (cannabinoids by structure)
ERTooltip Estrogen receptor
Agonists
Mixed
(SERMsTooltip Selective estrogen receptor modulators)
Antagonists
GPERTooltip G protein-coupled estrogen receptor
Agonists
Antagonists
Unknown
Receptor
(ligands)
GlyRTooltip Glycine receptor
NMDARTooltip N-Methyl-D-aspartate receptor
Transporter
(blockers)
GlyT1Tooltip Glycine transporter 1
GlyT2Tooltip Glycine transporter 2
Non-specific
AAADTooltip Aromatic L-amino acid decarboxylase
MAOTooltip Monoamine oxidase
Phenethylamines
(dopamine,epinephrine,
norepinephrine)
PAHTooltip Phenylalanine hydroxylase
THTooltip Tyrosine hydroxylase
DBHTooltip Dopamine beta-hydroxylase
PNMTTooltip Phenylethanolamine N-methyltransferase
COMTTooltip Catechol-O-methyl transferase
Tryptamines
(serotonin,melatonin)
TPHTooltip Tryptophan hydroxylase
AANATTooltip Serotonin N-acetyl transferase
ASMTTooltip Acetylserotonin O-methyltransferase
Histamine
HDCTooltip Histidine decarboxylase
HNMTTooltip Histamine N-methyltransferase
DAOTooltip Diamine oxidase
PPARTooltip Peroxisome proliferator-activated receptormodulators
PPARαTooltip Peroxisome proliferator-activated receptor alpha
PPARδTooltip Peroxisome proliferator-activated receptor delta
PPARγTooltip Peroxisome proliferator-activated receptor gamma
Non-selective
Receptor
(ligands)
THRTooltip Thyroid hormone receptor
Agonists
Thyromimetics
(selective agonists)
Antagonists
Transporter
(blockers)
NISTooltip Sodium-iodide symporter
 
Enzyme
(inhibitors)
TPOTooltip Thyroid peroxidase
DIOTooltip Iodothyronine deiodinase
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Genistein&oldid=1314349548"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp