Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Generalized mean

From Wikipedia, the free encyclopedia
N-th root of the arithmetic mean of the given numbers raised to the power n
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Generalized mean" – news ·newspapers ·books ·scholar ·JSTOR
(June 2020) (Learn how and when to remove this message)
Plot of several generalized meansMp(1,x){\displaystyle M_{p}(1,x)}

Inmathematics,generalized means (orpower mean orHölder mean fromOtto Hölder)[1] are a family of functions for aggregating sets of numbers. These include as special cases thePythagorean means (arithmetic,geometric, andharmonicmeans).

Definition

[edit]

Ifp is a non-zeroreal number, andx1,,xn{\displaystyle x_{1},\dots ,x_{n}} arepositive real numbers, then thegeneralized mean orpower mean with exponentp of these positive real numbers is[2][3]

Mp(x1,,xn)=(1ni=1nxip)1/p.{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{p}\right)^{{1}/{p}}.}

(Seep-norm). Forp = 0 we set it equal to the geometric mean (which is the limit of means with exponents approaching zero, as proved below):

M0(x1,,xn)=(i=1nxi)1/n.{\displaystyle M_{0}(x_{1},\dots ,x_{n})=\left(\prod _{i=1}^{n}x_{i}\right)^{1/n}.}

Furthermore, for asequence of positive weightswi we define theweighted power mean as[2]Mp(x1,,xn)=(i=1nwixipi=1nwi)1/p{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}}{\sum _{i=1}^{n}w_{i}}}\right)^{{1}/{p}}}and whenp = 0, it is equal to theweighted geometric mean:

M0(x1,,xn)=(i=1nxiwi)1/i=1nwi.{\displaystyle M_{0}(x_{1},\dots ,x_{n})=\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)^{1/\sum _{i=1}^{n}w_{i}}.}

The unweighted means correspond to setting allwi = 1.

Special cases

[edit]

For some values ofp{\displaystyle p}, the meanMp(x1,,xn){\displaystyle M_{p}(x_{1},\dots ,x_{n})} corresponds to a well known mean.

A visual depiction of some of the specified cases forn=2{\displaystyle n=2}.
  Harmonic mean:M1(a,b){\displaystyle M_{-1}(a,b)}.
  Geometric mean:M0(a,b){\displaystyle M_{0}(a,b)}.
  Arithmetic mean:M1(a,b){\displaystyle M_{1}(a,b)}.
  Quadratic mean:M2(a,b){\displaystyle M_{2}(a,b)}.
NameExponentValue
Minimump={\displaystyle p=-\infty }min{x1,,xn}{\displaystyle \min\{x_{1},\dots ,x_{n}\}}
Harmonic meanp=1{\displaystyle p=-1}n1x1++1xn{\displaystyle {\frac {n}{{\frac {1}{x_{1}}}+\dots +{\frac {1}{x_{n}}}}}}
Geometric meanp=0{\displaystyle p=0}x1xnn{\displaystyle {\sqrt[{n}]{x_{1}\dots x_{n}}}}
Arithmetic meanp=1{\displaystyle p=1}x1++xnn{\displaystyle {\frac {x_{1}+\dots +x_{n}}{n}}}
Root mean squarep=2{\displaystyle p=2}x12++xn2n{\displaystyle {\sqrt {\frac {x_{1}^{2}+\dots +x_{n}^{2}}{n}}}}
Cubic meanp=3{\displaystyle p=3}x13++xn3n3{\displaystyle {\sqrt[{3}]{\frac {x_{1}^{3}+\dots +x_{n}^{3}}{n}}}}
Maximump=+{\displaystyle p=+\infty }max{x1,,xn}{\displaystyle \max\{x_{1},\dots ,x_{n}\}}


Proof oflimp0Mp=M0{\textstyle \lim _{p\to 0}M_{p}=M_{0}} (geometric mean)

For the purpose of the proof, we will assume without loss of generality thatwi[0,1]{\displaystyle w_{i}\in [0,1]}andi=1nwi=1.{\displaystyle \sum _{i=1}^{n}w_{i}=1.}

We can rewrite the definition ofMp{\displaystyle M_{p}} using the exponential function as

Mp(x1,,xn)=exp(ln[(i=1nwixip)1/p])=exp(ln(i=1nwixip)p){\displaystyle M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left[\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\right]}\right)}=\exp {\left({\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}\right)}}

In the limitp → 0, we can applyL'Hôpital's rule to the argument of the exponential function. We assume thatpR{\displaystyle p\in \mathbb {R} } butp ≠ 0, and that the sum ofwi is equal to 1 (without loss in generality);[4] Differentiating the numerator and denominator with respect top, we havelimp0ln(i=1nwixip)p=limp0i=1nwixiplnxij=1nwjxjp1=limp0i=1nwixiplnxij=1nwjxjp=i=1nwilnxij=1nwj=i=1nwilnxi=ln(i=1nxiwi){\displaystyle {\begin{aligned}\lim _{p\to 0}{\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}&=\lim _{p\to 0}{\frac {\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{j=1}^{n}w_{j}x_{j}^{p}}}{1}}\\&=\lim _{p\to 0}{\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{j=1}^{n}w_{j}x_{j}^{p}}}\\&={\frac {\sum _{i=1}^{n}w_{i}\ln {x_{i}}}{\sum _{j=1}^{n}w_{j}}}\\&=\sum _{i=1}^{n}w_{i}\ln {x_{i}}\\&=\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}\end{aligned}}}

By the continuity of the exponential function, we can substitute back into the above relation to obtainlimp0Mp(x1,,xn)=exp(ln(i=1nxiwi))=i=1nxiwi=M0(x1,,xn){\displaystyle \lim _{p\to 0}M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}\right)}=\prod _{i=1}^{n}x_{i}^{w_{i}}=M_{0}(x_{1},\dots ,x_{n})}as desired.[2]

Proof oflimpMp=M{\textstyle \lim _{p\to \infty }M_{p}=M_{\infty }} andlimpMp=M{\textstyle \lim _{p\to -\infty }M_{p}=M_{-\infty }}

Assume (possibly after relabeling and combining terms together) thatx1xn{\displaystyle x_{1}\geq \dots \geq x_{n}}. Then

limpMp(x1,,xn)=limp(i=1nwixip)1/p=x1limp(i=1nwi(xix1)p)1/p=x1=M(x1,,xn).{\displaystyle {\begin{aligned}\lim _{p\to \infty }M_{p}(x_{1},\dots ,x_{n})&=\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\\&=x_{1}\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}\left({\frac {x_{i}}{x_{1}}}\right)^{p}\right)^{1/p}\\&=x_{1}=M_{\infty }(x_{1},\dots ,x_{n}).\end{aligned}}}

The formula forM{\displaystyle M_{-\infty }} follows fromM(x1,,xn)=1M(1/x1,,1/xn)=xn.{\displaystyle M_{-\infty }(x_{1},\dots ,x_{n})={\frac {1}{M_{\infty }(1/x_{1},\dots ,1/x_{n})}}=x_{n}.}

Properties

[edit]

Letx1,,xn{\displaystyle x_{1},\dots ,x_{n}} be a sequence of positive real numbers, then the following properties hold:[1]

  1. min(x1,,xn)Mp(x1,,xn)max(x1,,xn){\displaystyle \min(x_{1},\dots ,x_{n})\leq M_{p}(x_{1},\dots ,x_{n})\leq \max(x_{1},\dots ,x_{n})}.
    Each generalized mean always lies between the smallest and largest of thex values.
  2. Mp(x1,,xn)=Mp(P(x1,,xn)){\displaystyle M_{p}(x_{1},\dots ,x_{n})=M_{p}(P(x_{1},\dots ,x_{n}))}, whereP{\displaystyle P} is a permutation operator.
    Each generalized mean is a symmetric function of its arguments; permuting the arguments of a generalized mean does not change its value.
  3. Mp(bx1,,bxn)=bMp(x1,,xn){\displaystyle M_{p}(bx_{1},\dots ,bx_{n})=b\cdot M_{p}(x_{1},\dots ,x_{n})}.
    Like mostmeans, the generalized mean is ahomogeneous function of its argumentsx1, ...,xn. That is, ifb is a positive real number, then the generalized mean with exponentp of the numbersbx1,,bxn{\displaystyle b\cdot x_{1},\dots ,b\cdot x_{n}} is equal tob times the generalized mean of the numbersx1, ...,xn.
  4. Mp(x1,,xnk)=Mp[Mp(x1,,xk),Mp(xk+1,,x2k),,Mp(x(n1)k+1,,xnk)]{\displaystyle M_{p}(x_{1},\dots ,x_{n\cdot k})=M_{p}\left[M_{p}(x_{1},\dots ,x_{k}),M_{p}(x_{k+1},\dots ,x_{2\cdot k}),\dots ,M_{p}(x_{(n-1)\cdot k+1},\dots ,x_{n\cdot k})\right]}.
    Like thequasi-arithmetic means, the computation of the mean can be split into computations of equal sized sub-blocks. This enables use of adivide and conquer algorithm to calculate the means, when desirable.

Generalized mean inequality

[edit]
Geometricproof without words thatmax (a,b) >root mean square (RMS) orquadratic mean (QM) >arithmetic mean (AM) >geometric mean (GM) >harmonic mean (HM) >min (a,b) of two distinct positive numbersa andb[note 1]

In general, ifp <q, thenMp(x1,,xn)Mq(x1,,xn){\displaystyle M_{p}(x_{1},\dots ,x_{n})\leq M_{q}(x_{1},\dots ,x_{n})}and the two means are equal if and only ifx1 =x2 = ... =xn.

The inequality is true for real values ofp andq, as well as positive and negative infinity values.

It follows from the fact that, for all realp,pMp(x1,,xn)0{\displaystyle {\frac {\partial }{\partial p}}M_{p}(x_{1},\dots ,x_{n})\geq 0}which can be proved usingJensen's inequality.

In particular, forp in{−1, 0, 1}, the generalized mean inequality implies thePythagorean means inequality as well as theinequality of arithmetic and geometric means.

Proof of the weighted inequality

[edit]

We will prove the weighted power mean inequality. For the purpose of the proof we will assume the followingwithout loss of generality:wi[0,1]i=1nwi=1{\displaystyle {\begin{aligned}w_{i}\in [0,1]\\\sum _{i=1}^{n}w_{i}=1\end{aligned}}}

The proof for unweighted power means can be easily obtained by substitutingwi = 1/n.

Equivalence of inequalities between means of opposite signs

[edit]

Suppose an average between power means with exponentsp andq holds:(i=1nwixip)1/p(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\geq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}}applying this, then:(i=1nwixip)1/p(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}{\frac {w_{i}}{x_{i}^{p}}}\right)^{1/p}\geq \left(\sum _{i=1}^{n}{\frac {w_{i}}{x_{i}^{q}}}\right)^{1/q}}

We raise both sides to the power of −1 (strictly decreasing function in positive reals):(i=1nwixip)1/p=(1i=1nwi1xip)1/p(1i=1nwi1xiq)1/q=(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{-p}\right)^{-1/p}=\left({\frac {1}{\sum _{i=1}^{n}w_{i}{\frac {1}{x_{i}^{p}}}}}\right)^{1/p}\leq \left({\frac {1}{\sum _{i=1}^{n}w_{i}{\frac {1}{x_{i}^{q}}}}}\right)^{1/q}=\left(\sum _{i=1}^{n}w_{i}x_{i}^{-q}\right)^{-1/q}}

We get the inequality for means with exponentsp andq, and we can use the same reasoning backwards, thus proving the inequalities to be equivalent, which will be used in some of the later proofs.

Geometric mean

[edit]

For anyq > 0 and non-negative weights summing to 1, the following inequality holds:(i=1nwixiq)1/qi=1nxiwi(i=1nwixiq)1/q.{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{-q}\right)^{-1/q}\leq \prod _{i=1}^{n}x_{i}^{w_{i}}\leq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}.}

The proof follows fromJensen's inequality, making use of the fact thelogarithm is concave:logi=1nxiwi=i=1nwilogxilogi=1nwixi.{\displaystyle \log \prod _{i=1}^{n}x_{i}^{w_{i}}=\sum _{i=1}^{n}w_{i}\log x_{i}\leq \log \sum _{i=1}^{n}w_{i}x_{i}.}

By applying theexponential function to both sides and observing that as a strictly increasing function it preserves the sign of the inequality, we geti=1nxiwii=1nwixi.{\displaystyle \prod _{i=1}^{n}x_{i}^{w_{i}}\leq \sum _{i=1}^{n}w_{i}x_{i}.}

Takingq-th powers of thexi yieldsi=1nxiqwii=1nwixiqi=1nxiwi(i=1nwixiq)1/q.{\displaystyle {\begin{aligned}&\prod _{i=1}^{n}x_{i}^{q{\cdot }w_{i}}\leq \sum _{i=1}^{n}w_{i}x_{i}^{q}\\&\prod _{i=1}^{n}x_{i}^{w_{i}}\leq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}.\end{aligned}}}

Thus, we are done for the inequality with positiveq; the case for negatives is identical but for the swapped signs in the last step:

i=1nxiqwii=1nwixiq.{\displaystyle \prod _{i=1}^{n}x_{i}^{-q{\cdot }w_{i}}\leq \sum _{i=1}^{n}w_{i}x_{i}^{-q}.}

Of course, taking each side to the power of a negative number-1/q swaps the direction of the inequality.

i=1nxiwi(i=1nwixiq)1/q.{\displaystyle \prod _{i=1}^{n}x_{i}^{w_{i}}\geq \left(\sum _{i=1}^{n}w_{i}x_{i}^{-q}\right)^{-1/q}.}

Inequality between any two power means

[edit]

We are to prove that for anyp <q the following inequality holds:(i=1nwixip)1/p(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\leq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}}ifp is negative, andq is positive, the inequality is equivalent to the one proved above:(i=1nwixip)1/pi=1nxiwi(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\leq \prod _{i=1}^{n}x_{i}^{w_{i}}\leq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}}

The proof for positivep andq is as follows: Define the following function:f :R+R+f(x)=xqp{\displaystyle f(x)=x^{\frac {q}{p}}}.f is a power function, so it does have asecond derivative:f(x)=(qp)(qp1)xqp2{\displaystyle f''(x)=\left({\frac {q}{p}}\right)\left({\frac {q}{p}}-1\right)x^{{\frac {q}{p}}-2}}which is strictly positive within the domain off, sinceq >p, so we knowf is convex.

Using this, and the Jensen's inequality we get:f(i=1nwixip)i=1nwif(xip)(i=1nwixip)q/pi=1nwixiq{\displaystyle {\begin{aligned}f\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)&\leq \sum _{i=1}^{n}w_{i}f(x_{i}^{p})\\[3pt]\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{q/p}&\leq \sum _{i=1}^{n}w_{i}x_{i}^{q}\end{aligned}}}after raising both side to the power of1/q (an increasing function, since1/q is positive) we get the inequality which was to be proven:

(i=1nwixip)1/p(i=1nwixiq)1/q{\displaystyle \left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\leq \left(\sum _{i=1}^{n}w_{i}x_{i}^{q}\right)^{1/q}}

Using the previously shown equivalence we can prove the inequality for negativep andq by replacing them with−q and−p, respectively.

Generalizedf-mean

[edit]
Main article:Generalizedf-mean

The power mean could be generalized further to thegeneralizedf-mean:

Mf(x1,,xn)=f1(1ni=1nf(xi)){\displaystyle M_{f}(x_{1},\dots ,x_{n})=f^{-1}\left({{\frac {1}{n}}\cdot \sum _{i=1}^{n}{f(x_{i})}}\right)}

This covers the geometric mean without using a limit withf(x) = log(x). The power mean is obtained forf(x) =xp. Properties of these means are studied in de Carvalho (2016).[3]

Applications

[edit]

Signal processing

[edit]

A power mean serves a non-linearmoving average which is shifted towards small signal values for smallp and emphasizes big signal values for bigp. Given an efficient implementation of amoving arithmetic mean calledsmooth one can implement a moving power mean according to the followingHaskell code.

powerSmooth::Floatinga=>([a]->[a])->a->[a]->[a]powerSmoothsmoothp=map(**recipp).smooth.map(**p)

See also

[edit]

Notes

[edit]
  1. ^If NM =a and PM =b. AM =AM ofa andb, and radiusr = AQ = AG.
    UsingPythagoras' theorem, QM² = AQ² + AM² ∴ QM = √AQ² + AM² =QM.
    Using Pythagoras' theorem, AM² = AG² + GM² ∴ GM = √AM² − AG² =GM.
    Usingsimilar triangles,HM/GM =GM/AM ∴ HM =GM²/AM =HM.

References

[edit]
  1. ^abSýkora, Stanislav (2009). "Mathematical means and averages: basic properties".Stan's Library.III. Castano Primo, Italy.doi:10.3247/SL3Math09.001.
  2. ^abcP. S. Bullen:Handbook of Means and Their Inequalities. Dordrecht, Netherlands: Kluwer, 2003, pp. 175-177
  3. ^abde Carvalho, Miguel (2016)."Mean, what do you Mean?".The American Statistician.70 (3): 764‒776.doi:10.1080/00031305.2016.1148632.hdl:20.500.11820/fd7a8991-69a4-4fe5-876f-abcd2957a88c.
  4. ^Handbook of Means and Their Inequalities (Mathematics and Its Applications).

Further reading

[edit]
  • Bullen, P. S. (2003). "Chapter III - The Power Means".Handbook of Means and Their Inequalities. Dordrecht, Netherlands: Kluwer. pp. 175–265.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_mean&oldid=1304205451"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp