whereKp is amodified Bessel function of the second kind,a > 0,b > 0 andp a real parameter. It is used extensively ingeostatistics, statistical linguistics, finance, etc. This distribution was first proposed byÉtienne Halphen.[1][2][3] It was rediscovered and popularised byOle Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes.[4]
Theinverse Gaussian andgamma distributions are special cases of the generalized inverse Gaussian distribution forp = −1/2 andb = 0, respectively.[7] Specifically, an inverse Gaussian distribution of the form
is a GIG with,, and. A gamma distribution of the form
^Due to the conjugacy, these details can be derived without solving integrals, by noting that
.
Omitting all factors independent of, the right-hand-side can be simplified to give anun-normalized GIG distribution, from which the posterior parameters can be identified.
^Seshadri, V. (1997). "Halphen's laws". In Kotz, S.; Read, C. B.; Banks, D. L. (eds.).Encyclopedia of Statistical Sciences, Update Volume 1. New York: Wiley. pp. 302–306.
^Perreault, L.; Bobée, B.; Rasmussen, P. F. (1999). "Halphen Distribution System. I: Mathematical and Statistical Properties".Journal of Hydrologic Engineering.4 (3): 189.doi:10.1061/(ASCE)1084-0699(1999)4:3(189).
^Jørgensen, Bent (1982).Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. Vol. 9. New York–Berlin: Springer-Verlag.ISBN0-387-90665-7.MR0648107.
^Barndorff-Nielsen, O.; Halgreen, Christian (1977). "Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions".Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete.38:309–311.doi:10.1007/BF00533162.
^abJohnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994),Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York:John Wiley & Sons, pp. 284–285,ISBN978-0-471-58495-7,MR1299979
^Karlis, Dimitris (2002). "An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution".Statistics & Probability Letters.57 (1):43–52.doi:10.1016/S0167-7152(02)00040-8.
^Barndorf-Nielsen, O. E. (1997). "Normal Inverse Gaussian Distributions and stochastic volatility modelling".Scand. J. Statist.24 (1):1–13.doi:10.1111/1467-9469.00045.
^Sichel, Herbert S. (1975). "On a distribution law for word frequencies".Journal of the American Statistical Association.70 (351a):542–547.doi:10.1080/01621459.1975.10482469.
^Stein, Gillian Z.; Zucchini, Walter; Juritz, June M. (1987). "Parameter estimation for the Sichel distribution and its multivariate extension".Journal of the American Statistical Association.82 (399):938–944.doi:10.1080/01621459.1987.10478520.