Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Generalized gamma distribution

From Wikipedia, the free encyclopedia
Probability distribution
Generalized gamma
Probability density function
Gen Gamma PDF plot
Parametersa>0{\displaystyle a>0} (scale),d,p>0{\displaystyle d,p>0}
Supportx(0,){\displaystyle x\;\in \;(0,\,\infty )}
PDFp/adΓ(d/p)xd1e(x/a)p{\displaystyle {\frac {p/a^{d}}{\Gamma (d/p)}}x^{d-1}e^{-(x/a)^{p}}}
CDFγ(d/p,(x/a)p)Γ(d/p){\displaystyle {\frac {\gamma (d/p,(x/a)^{p})}{\Gamma (d/p)}}}
MeanaΓ((d+1)/p)Γ(d/p){\displaystyle a{\frac {\Gamma ((d+1)/p)}{\Gamma (d/p)}}}
Modea(d1p)1pford>1,otherwise0{\displaystyle a\left({\frac {d-1}{p}}\right)^{\frac {1}{p}}\mathrm {for} \;d>1,\mathrm {otherwise} \;0}
Variancea2(Γ((d+2)/p)Γ(d/p)(Γ((d+1)/p)Γ(d/p))2){\displaystyle a^{2}\left({\frac {\Gamma ((d+2)/p)}{\Gamma (d/p)}}-\left({\frac {\Gamma ((d+1)/p)}{\Gamma (d/p)}}\right)^{2}\right)}
EntropylnaΓ(d/p)p+dp+a(1pdp)ψ(dp){\displaystyle \ln {\frac {a\Gamma (d/p)}{p}}+{\frac {d}{p}}+a\left({\frac {1}{p}}-{\frac {d}{p}}\right)\psi \left({\frac {d}{p}}\right)}

Thegeneralized gamma distribution is acontinuousprobability distribution with twoshape parameters (and ascale parameter). It is a generalization of thegamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models insurvival analysis (such as theexponential distribution, theWeibull distribution and thegamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data.[1] Another example is thehalf-normal distribution.

Characteristics

[edit]

The generalized gamma distribution has twoshape parameters,d>0{\displaystyle d>0} andp>0{\displaystyle p>0}, and ascale parameter,a>0{\displaystyle a>0}. For non-negativex from a generalized gamma distribution, theprobability density function is[2]

f(x;a,d,p)=(p/ad)xd1e(x/a)pΓ(d/p),{\displaystyle f(x;a,d,p)={\frac {(p/a^{d})x^{d-1}e^{-(x/a)^{p}}}{\Gamma (d/p)}},}

whereΓ(){\displaystyle \Gamma (\cdot )} denotes thegamma function.

Thecumulative distribution function is

F(x;a,d,p)=γ(d/p,(x/a)p)Γ(d/p),orP(dp,(xa)p);{\displaystyle F(x;a,d,p)={\frac {\gamma (d/p,(x/a)^{p})}{\Gamma (d/p)}},{\text{or}}\,P\left({\frac {d}{p}},\left({\frac {x}{a}}\right)^{p}\right);}

whereγ(){\displaystyle \gamma (\cdot )} denotes thelower incomplete gamma function, andP(,){\displaystyle P(\cdot ,\cdot )} denotes theregularized lower incomplete gamma function.

Thequantile function can be found by noting thatF(x;a,d,p)=G((x/a)p){\displaystyle F(x;a,d,p)=G((x/a)^{p})} whereG{\displaystyle G} is the cumulative distribution function of the gamma distribution with parametersα=d/p{\displaystyle \alpha =d/p} andβ=1{\displaystyle \beta =1}. The quantile function is then given by invertingF{\displaystyle F} using known relations aboutinverse of composite functions, yielding:

F1(q;a,d,p)=a[G1(q)]1/p,{\displaystyle F^{-1}(q;a,d,p)=a\cdot {\big [}G^{-1}(q){\big ]}^{1/p},}

withG1(q){\displaystyle G^{-1}(q)} being the quantile function for a gamma distribution withα=d/p,β=1{\displaystyle \alpha =d/p,\,\beta =1}.

Related distributions

[edit]

Alternative parameterisations of this distribution are sometimes used; for example with the substitutionα  =   d/p.[3] In addition, a shift parameter can be added, so the domain ofx starts at some value other than zero.[3] If the restrictions on the signs ofa,d andp are also lifted (but α =d/p remains positive), this gives a distribution called theAmoroso distribution, after the Italian mathematician and economistLuigi Amoroso who described it in 1925.[4]

Moments

[edit]

IfX has a generalized gamma distribution as above, then[3]

E(Xr)=arΓ(d+rp)Γ(dp).{\displaystyle \operatorname {E} (X^{r})=a^{r}{\frac {\Gamma ({\frac {d+r}{p}})}{\Gamma ({\frac {d}{p}})}}.}

Properties

[edit]

DenoteGG(a,d,p) as the generalized gamma distribution of parametersa,d,p.Then, givenc{\displaystyle c} andα{\displaystyle \alpha } two positive real numbers, iffGG(a,d,p){\displaystyle f\sim GG(a,d,p)}, thencfGG(ca,d,p){\displaystyle cf\sim GG(ca,d,p)} andfαGG(aα,dα,pα){\displaystyle f^{\alpha }\sim GG\left(a^{\alpha },{\frac {d}{\alpha }},{\frac {p}{\alpha }}\right)}.

Kullback–Leibler divergence

[edit]

Iff1{\displaystyle f_{1}} andf2{\displaystyle f_{2}} are the probability density functions of two generalized gamma distributions, then theirKullback–Leibler divergence is given by

DKL(f1f2)=0f1(x;a1,d1,p1)lnf1(x;a1,d1,p1)f2(x;a2,d2,p2)dx=lnp1a2d2Γ(d2/p2)p2a1d1Γ(d1/p1)+[ψ(d1/p1)p1+lna1](d1d2)+Γ((d1+p2)/p1)Γ(d1/p1)(a1a2)p2d1p1{\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;a_{1},d_{1},p_{1})\,\ln {\frac {f_{1}(x;a_{1},d_{1},p_{1})}{f_{2}(x;a_{2},d_{2},p_{2})}}\,dx\\&=\ln {\frac {p_{1}\,a_{2}^{d_{2}}\,\Gamma \left(d_{2}/p_{2}\right)}{p_{2}\,a_{1}^{d_{1}}\,\Gamma \left(d_{1}/p_{1}\right)}}+\left[{\frac {\psi \left(d_{1}/p_{1}\right)}{p_{1}}}+\ln a_{1}\right](d_{1}-d_{2})+{\frac {\Gamma {\bigl (}(d_{1}+p_{2})/p_{1}{\bigr )}}{\Gamma \left(d_{1}/p_{1}\right)}}\left({\frac {a_{1}}{a_{2}}}\right)^{p_{2}}-{\frac {d_{1}}{p_{1}}}\end{aligned}}}

whereψ(){\displaystyle \psi (\cdot )} is thedigamma function.[5]

Software implementation

[edit]

In theR programming language, there are a few packages that include functions for fitting and generating generalized gamma distributions. Thegamlss package in R allows for fitting and generating many different distribution families includinggeneralized gamma (family=GG). Other options in R, implemented in the packageflexsurv, include the functiondgengamma, with parameterization:μ=lna+lndlnpp{\displaystyle \mu =\ln a+{\frac {\ln d-\ln p}{p}}},σ=1pd{\displaystyle \sigma ={\frac {1}{\sqrt {pd}}}},Q=pd{\displaystyle Q={\sqrt {\frac {p}{d}}}}, and in the packageggamma with parametrisation:a=a{\displaystyle a=a},b=p{\displaystyle b=p},k=d/p{\displaystyle k=d/p}.

In thepython programming language,it is implemented in theSciPy package, with parametrisation:c=p{\displaystyle c=p},a=d/p{\displaystyle a=d/p}, and scale of 1.

See also

[edit]

References

[edit]
  1. ^Box-Steffensmeier, Janet M.; Jones, Bradford S. (2004)Event History Modeling: A Guide for Social Scientists. Cambridge University Press.ISBN 0-521-54673-7 (pp. 41-43)
  2. ^Stacy, E.W. (1962). "A Generalization of the Gamma Distribution."Annals of Mathematical Statistics 33(3): 1187-1192.JSTOR 2237889
  3. ^abcJohnson, N.L.; Kotz, S; Balakrishnan, N. (1994)Continuous Univariate Distributions, Volume 1, 2nd Edition. Wiley.ISBN 0-471-58495-9 (Section 17.8.7)
  4. ^Gavin E. Crooks (2010),The Amoroso Distribution, Technical Note, Lawrence Berkeley National Laboratory.
  5. ^C. Bauckhage (2014), Computing the Kullback–Leibler Divergence between two Generalized Gamma Distributions,arXiv:1401.6853.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_gamma_distribution&oldid=1303268409"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp