Probability distribution
Generalized gamma Probability density function
Parameters a > 0 {\displaystyle a>0} (scale),d , p > 0 {\displaystyle d,p>0} Support x ∈ ( 0 , ∞ ) {\displaystyle x\;\in \;(0,\,\infty )} PDF p / a d Γ ( d / p ) x d − 1 e − ( x / a ) p {\displaystyle {\frac {p/a^{d}}{\Gamma (d/p)}}x^{d-1}e^{-(x/a)^{p}}} CDF γ ( d / p , ( x / a ) p ) Γ ( d / p ) {\displaystyle {\frac {\gamma (d/p,(x/a)^{p})}{\Gamma (d/p)}}} Mean a Γ ( ( d + 1 ) / p ) Γ ( d / p ) {\displaystyle a{\frac {\Gamma ((d+1)/p)}{\Gamma (d/p)}}} Mode a ( d − 1 p ) 1 p f o r d > 1 , o t h e r w i s e 0 {\displaystyle a\left({\frac {d-1}{p}}\right)^{\frac {1}{p}}\mathrm {for} \;d>1,\mathrm {otherwise} \;0} Variance a 2 ( Γ ( ( d + 2 ) / p ) Γ ( d / p ) − ( Γ ( ( d + 1 ) / p ) Γ ( d / p ) ) 2 ) {\displaystyle a^{2}\left({\frac {\Gamma ((d+2)/p)}{\Gamma (d/p)}}-\left({\frac {\Gamma ((d+1)/p)}{\Gamma (d/p)}}\right)^{2}\right)} Entropy ln a Γ ( d / p ) p + d p + a ( 1 p − d p ) ψ ( d p ) {\displaystyle \ln {\frac {a\Gamma (d/p)}{p}}+{\frac {d}{p}}+a\left({\frac {1}{p}}-{\frac {d}{p}}\right)\psi \left({\frac {d}{p}}\right)}
Thegeneralized gamma distribution is acontinuous probability distribution with twoshape parameters (and ascale parameter ). It is a generalization of thegamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models insurvival analysis (such as theexponential distribution , theWeibull distribution and thegamma distribution ) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data.[ 1] Another example is thehalf-normal distribution .
The generalized gamma distribution has twoshape parameters ,d > 0 {\displaystyle d>0} andp > 0 {\displaystyle p>0} , and ascale parameter ,a > 0 {\displaystyle a>0} . For non-negativex from a generalized gamma distribution, theprobability density function is[ 2]
f ( x ; a , d , p ) = ( p / a d ) x d − 1 e − ( x / a ) p Γ ( d / p ) , {\displaystyle f(x;a,d,p)={\frac {(p/a^{d})x^{d-1}e^{-(x/a)^{p}}}{\Gamma (d/p)}},} whereΓ ( ⋅ ) {\displaystyle \Gamma (\cdot )} denotes thegamma function .
Thecumulative distribution function is
F ( x ; a , d , p ) = γ ( d / p , ( x / a ) p ) Γ ( d / p ) , or P ( d p , ( x a ) p ) ; {\displaystyle F(x;a,d,p)={\frac {\gamma (d/p,(x/a)^{p})}{\Gamma (d/p)}},{\text{or}}\,P\left({\frac {d}{p}},\left({\frac {x}{a}}\right)^{p}\right);} whereγ ( ⋅ ) {\displaystyle \gamma (\cdot )} denotes thelower incomplete gamma function , andP ( ⋅ , ⋅ ) {\displaystyle P(\cdot ,\cdot )} denotes theregularized lower incomplete gamma function .
Thequantile function can be found by noting thatF ( x ; a , d , p ) = G ( ( x / a ) p ) {\displaystyle F(x;a,d,p)=G((x/a)^{p})} whereG {\displaystyle G} is the cumulative distribution function of the gamma distribution with parametersα = d / p {\displaystyle \alpha =d/p} andβ = 1 {\displaystyle \beta =1} . The quantile function is then given by invertingF {\displaystyle F} using known relations aboutinverse of composite functions , yielding:
F − 1 ( q ; a , d , p ) = a ⋅ [ G − 1 ( q ) ] 1 / p , {\displaystyle F^{-1}(q;a,d,p)=a\cdot {\big [}G^{-1}(q){\big ]}^{1/p},} withG − 1 ( q ) {\displaystyle G^{-1}(q)} being the quantile function for a gamma distribution withα = d / p , β = 1 {\displaystyle \alpha =d/p,\,\beta =1} .
Related distributions [ edit ] Alternative parameterisations of this distribution are sometimes used; for example with the substitutionα = d/p .[ 3] In addition, a shift parameter can be added, so the domain ofx starts at some value other than zero.[ 3] If the restrictions on the signs ofa ,d andp are also lifted (but α =d /p remains positive), this gives a distribution called theAmoroso distribution , after the Italian mathematician and economistLuigi Amoroso who described it in 1925.[ 4]
IfX has a generalized gamma distribution as above, then[ 3]
E ( X r ) = a r Γ ( d + r p ) Γ ( d p ) . {\displaystyle \operatorname {E} (X^{r})=a^{r}{\frac {\Gamma ({\frac {d+r}{p}})}{\Gamma ({\frac {d}{p}})}}.} DenoteGG(a,d,p) as the generalized gamma distribution of parametersa ,d ,p .Then, givenc {\displaystyle c} andα {\displaystyle \alpha } two positive real numbers, iff ∼ G G ( a , d , p ) {\displaystyle f\sim GG(a,d,p)} , thenc f ∼ G G ( c a , d , p ) {\displaystyle cf\sim GG(ca,d,p)} andf α ∼ G G ( a α , d α , p α ) {\displaystyle f^{\alpha }\sim GG\left(a^{\alpha },{\frac {d}{\alpha }},{\frac {p}{\alpha }}\right)} .
Kullback–Leibler divergence[ edit ] Iff 1 {\displaystyle f_{1}} andf 2 {\displaystyle f_{2}} are the probability density functions of two generalized gamma distributions, then theirKullback–Leibler divergence is given by
D K L ( f 1 ∥ f 2 ) = ∫ 0 ∞ f 1 ( x ; a 1 , d 1 , p 1 ) ln f 1 ( x ; a 1 , d 1 , p 1 ) f 2 ( x ; a 2 , d 2 , p 2 ) d x = ln p 1 a 2 d 2 Γ ( d 2 / p 2 ) p 2 a 1 d 1 Γ ( d 1 / p 1 ) + [ ψ ( d 1 / p 1 ) p 1 + ln a 1 ] ( d 1 − d 2 ) + Γ ( ( d 1 + p 2 ) / p 1 ) Γ ( d 1 / p 1 ) ( a 1 a 2 ) p 2 − d 1 p 1 {\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;a_{1},d_{1},p_{1})\,\ln {\frac {f_{1}(x;a_{1},d_{1},p_{1})}{f_{2}(x;a_{2},d_{2},p_{2})}}\,dx\\&=\ln {\frac {p_{1}\,a_{2}^{d_{2}}\,\Gamma \left(d_{2}/p_{2}\right)}{p_{2}\,a_{1}^{d_{1}}\,\Gamma \left(d_{1}/p_{1}\right)}}+\left[{\frac {\psi \left(d_{1}/p_{1}\right)}{p_{1}}}+\ln a_{1}\right](d_{1}-d_{2})+{\frac {\Gamma {\bigl (}(d_{1}+p_{2})/p_{1}{\bigr )}}{\Gamma \left(d_{1}/p_{1}\right)}}\left({\frac {a_{1}}{a_{2}}}\right)^{p_{2}}-{\frac {d_{1}}{p_{1}}}\end{aligned}}} whereψ ( ⋅ ) {\displaystyle \psi (\cdot )} is thedigamma function .[ 5]
Software implementation [ edit ] In theR programming language, there are a few packages that include functions for fitting and generating generalized gamma distributions. Thegamlss package in R allows for fitting and generating many different distribution families includinggeneralized gamma (family=GG). Other options in R, implemented in the packageflexsurv , include the functiondgengamma , with parameterization:μ = ln a + ln d − ln p p {\displaystyle \mu =\ln a+{\frac {\ln d-\ln p}{p}}} ,σ = 1 p d {\displaystyle \sigma ={\frac {1}{\sqrt {pd}}}} ,Q = p d {\displaystyle Q={\sqrt {\frac {p}{d}}}} , and in the packageggamma with parametrisation:a = a {\displaystyle a=a} ,b = p {\displaystyle b=p} ,k = d / p {\displaystyle k=d/p} .
In thepython programming language,it is implemented in theSciPy package, with parametrisation:c = p {\displaystyle c=p} ,a = d / p {\displaystyle a=d/p} , and scale of 1.
^ Box-Steffensmeier, Janet M.; Jones, Bradford S. (2004)Event History Modeling: A Guide for Social Scientists . Cambridge University Press.ISBN 0-521-54673-7 (pp. 41-43) ^ Stacy, E.W. (1962). "A Generalization of the Gamma Distribution."Annals of Mathematical Statistics 33(3): 1187-1192.JSTOR 2237889 ^a b c Johnson, N.L.; Kotz, S; Balakrishnan, N. (1994)Continuous Univariate Distributions, Volume 1 , 2nd Edition. Wiley.ISBN 0-471-58495-9 (Section 17.8.7) ^ Gavin E. Crooks (2010),The Amoroso Distribution , Technical Note, Lawrence Berkeley National Laboratory. ^ C. Bauckhage (2014), Computing the Kullback–Leibler Divergence between two Generalized Gamma Distributions,arXiv :1401.6853 .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate andsingular Families