Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Generalized beta distribution

From Wikipedia, the free encyclopedia
Probability distribution
icon
This articlerelies excessively onreferences toprimary sources. Please improve this article by addingsecondary or tertiary sources.
Find sources: "Generalized beta distribution" – news ·newspapers ·books ·scholar ·JSTOR
(April 2013) (Learn how and when to remove this message)

Inprobability andstatistics, thegeneralized beta distribution[1] is acontinuous probability distribution with fourshape parameters, including more than thirty named distributions aslimiting orspecial cases. A fifth parameter forscaling is sometimes included, while a sixth parameter forlocation is customarily left implicit and excluded from the characterization. The distribution has been used in the modeling ofincome distribution, stock returns, as well as inregression analysis. Theexponential generalized beta (EGB) distribution follows directly from the GB and generalizes other common distributions.

Definition

[edit]

A generalized beta random variable,Y, is defined by the following probability density function (pdf):

GB(y;a,b,c,p,q)=|a|yap1(1(1c)(y/b)a)q1bapB(p,q)(1+c(y/b)a)p+q for 0<ya<ba1c,{\displaystyle GB(y;a,b,c,p,q)={\frac {|a|y^{ap-1}(1-(1-c)(y/b)^{a})^{q-1}}{b^{ap}B(p,q)(1+c(y/b)^{a})^{p+q}}}\quad \quad {\text{ for }}0<y^{a}<{\frac {b^{a}}{1-c}},}

and zero otherwise. Here the parameters satisfya0{\displaystyle a\neq 0},0c1{\displaystyle 0\leq c\leq 1} andb{\displaystyle b},p{\displaystyle p}, andq{\displaystyle q} positive. The functionB(p,q) is thebeta function. The parameterb{\displaystyle b} is thescale parameter and can thus be set to1{\displaystyle 1}without loss of generality, but it is usually made explicit as in the function above. Thelocation parameter (not included in the formula above) is usually left implicit and set to0{\displaystyle 0}.

GB distribution tree

Properties

[edit]

Moments

[edit]

It can be shown that thehth moment can be expressed as follows:

EGB(Yh)=bhB(p+h/a,q)B(p,q)2F1[p+h/a,h/a;cp+q+h/a;],{\displaystyle \operatorname {E} _{GB}(Y^{h})={\frac {b^{h}B(p+h/a,q)}{B(p,q)}}{}_{2}F_{1}{\begin{bmatrix}p+h/a,h/a;c\\p+q+h/a;\end{bmatrix}},}

where2F1{\displaystyle {}_{2}F_{1}} denotes thehypergeometric series (which converges for allh ifc < 1, or for allh /a <q ifc = 1 ).

Related distributions

[edit]

The generalized beta encompasses many distributions as limiting or special cases. These are depicted in the GB distribution tree shown above. Listed below are its three direct descendants, or sub-families.

Generalized beta of first kind (GB1)

[edit]

The generalized beta of the first kind is defined by the following pdf:

GB1(y;a,b,p,q)=|a|yap1(1(y/b)a)q1bapB(p,q){\displaystyle GB1(y;a,b,p,q)={\frac {|a|y^{ap-1}(1-(y/b)^{a})^{q-1}}{b^{ap}B(p,q)}}}

for0<ya<ba{\displaystyle 0<y^{a}<b^{a}} whereb{\displaystyle b},p{\displaystyle p}, andq{\displaystyle q} are positive. It is easily verified that

GB1(y;a,b,p,q)=GB(y;a,b,c=0,p,q).{\displaystyle GB1(y;a,b,p,q)=GB(y;a,b,c=0,p,q).}

The moments of the GB1 are given by

EGB1(Yh)=bhB(p+h/a,q)B(p,q).{\displaystyle \operatorname {E} _{GB1}(Y^{h})={\frac {b^{h}B(p+h/a,q)}{B(p,q)}}.}

The GB1 includes thebeta of the first kind (B1),generalized gamma (GG), andPareto (PA) as special cases:

B1(y;b,p,q)=GB1(y;a=1,b,p,q),{\displaystyle B1(y;b,p,q)=GB1(y;a=1,b,p,q),}
GG(y;a,β,p)=limqGB1(y;a,b=q1/aβ,p,q),{\displaystyle GG(y;a,\beta ,p)=\lim _{q\to \infty }GB1(y;a,b=q^{1/a}\beta ,p,q),}
PA(y;b,p)=GB1(y;a=1,b,p,q=1).{\displaystyle PA(y;b,p)=GB1(y;a=-1,b,p,q=1).}

Generalized beta of the second kind (GB2)

[edit]

The GB2 is defined by the following pdf:

GB2(y;a,b,p,q)=|a|yap1bapB(p,q)(1+(y/b)a)p+q{\displaystyle GB2(y;a,b,p,q)={\frac {|a|y^{ap-1}}{b^{ap}B(p,q)(1+(y/b)^{a})^{p+q}}}}

for0<y<{\displaystyle 0<y<\infty } and zero otherwise. One can verify that

GB2(y;a,b,p,q)=GB(y;a,b,c=1,p,q).{\displaystyle GB2(y;a,b,p,q)=GB(y;a,b,c=1,p,q).}

The moments of the GB2 are given by

EGB2(Yh)=bhB(p+h/a,qh/a)B(p,q).{\displaystyle \operatorname {E} _{GB2}(Y^{h})={\frac {b^{h}B(p+h/a,q-h/a)}{B(p,q)}}.}

The GB2 is also known as theGeneralized Beta Prime (Patil, Boswell, Ratnaparkhi (1984)),[2] the transformed beta (Venter, 1983),[3] the generalized F (Kalfleisch and Prentice, 1980),[4] and is a special case (μ≡0) of theFeller-Pareto (Arnold, 1983)[5] distribution. The GB2 nests common distributions such as thegeneralized gamma (GG), Burr type 3,Burr type 12,Dagum,lognormal,Weibull,gamma,Lomax,F statistic, Fisk orRayleigh,chi-square,half-normal,half-Student's t,exponential, asymmetric log-Laplace,log-Laplace,power function, and thelog-logistic.[6]

Beta

[edit]

The beta family of distributions (B) is defined by:[1]

B(y;b,c,p,q)=yp1(1(1c)(y/b))q1bpB(p,q)(1+c(y/b))p+q{\displaystyle B(y;b,c,p,q)={\frac {y^{p-1}(1-(1-c)(y/b))^{q-1}}{b^{p}B(p,q)(1+c(y/b))^{p+q}}}}

for0<y<b/(1c){\displaystyle 0<y<b/(1-c)} and zero otherwise. Its relation to the GB is seen below:

B(y;b,c,p,q)=GB(y;a=1,b,c,p,q).{\displaystyle B(y;b,c,p,q)=GB(y;a=1,b,c,p,q).}

The beta family includes the beta of the first and second kind[7] (B1 and B2, where the B2 is also referred to as theBeta prime), which correspond toc = 0 andc = 1, respectively. Settingc=0{\displaystyle c=0},b=1{\displaystyle b=1} yields the standard two-parameterbeta distribution.

Generalized Gamma

[edit]

Thegeneralized gamma distribution (GG) is a limiting case of the GB2. Its PDF is defined by:[8]

GG(y;a,β,p)=limqGB2(y,a,b=q1/aβ,p,q)=|a|yap1e(y/β)aβapΓ(p){\displaystyle GG(y;a,\beta ,p)=\lim _{q\rightarrow \infty }GB2(y,a,b=q^{1/a}\beta ,p,q)={\frac {|a|y^{ap-1}e^{-(y/\beta )^{a}}}{\beta ^{ap}\Gamma (p)}}}

with theh{\displaystyle h}th moments given by

E(YGGh)=βhΓ(p+h/a)Γ(p).{\displaystyle \operatorname {E} (Y_{GG}^{h})={\frac {\beta ^{h}\Gamma (p+h/a)}{\Gamma (p)}}.}

As noted earlier, the GB distribution family tree visually depicts the special and limiting cases (see McDonald and Xu (1995) ).

Pareto

[edit]

ThePareto distribution (PA) is the following limiting case of the generalized gamma:

PA(y;β,θ)=limaGG(y;a,β,p=θ/a)=lima(θyθ1e(y/β)aβθ(θ/a)Γ(θ/a))={\displaystyle PA(y;\beta ,\theta )=\lim _{a\rightarrow -\infty }GG(y;a,\beta ,p=-\theta /a)=\lim _{a\rightarrow -\infty }\left({\frac {\theta y^{-\theta -1}e^{-(y/\beta )^{a}}}{\beta ^{-\theta }(-\theta /a)\Gamma (-\theta /a)}}\right)=}
lima(θyθ1e(y/β)aβθΓ(1θ/a))=θyθ1βθ{\displaystyle \lim _{a\rightarrow -\infty }\left({\frac {\theta y^{-\theta -1}e^{-(y/\beta )^{a}}}{\beta ^{-\theta }\Gamma (1-\theta /a)}}\right)={\frac {\theta y^{-\theta -1}}{\beta ^{-\theta }}}} forβ<y{\displaystyle \beta <y} and0{\displaystyle 0} otherwise.

Power function

[edit]

Thepower function distribution (P) is the following limiting case of the generalized gamma:

P(y;β,θ)=limaGG(y;a=θ/p,β,p)=limaθp|yθ1e(y/β)aβθΓ(p)=limaθyθ1pΓ(p)βθe(y/β)a={\displaystyle P(y;\beta ,\theta )=\lim _{a\rightarrow \infty }GG(y;a=\theta /p,\beta ,p)=\lim _{a\rightarrow \infty }{\frac {\mid {\frac {\theta }{p}}|y^{\theta -1}e^{-(y/\beta )^{a}}}{\beta ^{\theta }\Gamma (p)}}=\lim _{a\rightarrow \infty }{\frac {\theta y^{\theta -1}}{p\Gamma (p)\beta ^{\theta }}}e^{-(y/\beta )^{a}}=}
limaθyθ1Γ(p+1)βθe(y/β)a=limaθyθ1Γ(θa+1)βθe(y/β)a=θyθ1βθ{\displaystyle \lim _{a\rightarrow \infty }{\frac {\theta y^{\theta -1}}{\Gamma (p+1)\beta ^{\theta }}}e^{-(y/\beta )^{a}}=\lim _{a\rightarrow \infty }{\frac {\theta y^{\theta -1}}{\Gamma ({\frac {\theta }{a}}+1)\beta ^{\theta }}}e^{-(y/\beta )^{a}}={\frac {\theta y^{\theta -1}}{\beta ^{\theta }}}} for0<y<β{\displaystyle 0<y<\beta } andθ>0{\displaystyle \theta >0}.

Asymmetric Log-Laplace

[edit]

The asymmetric log-Laplace distribution (also referred to as the double Pareto distribution[9]) is defined by:[10]

ALL(y;b,λ1,λ2)=limaGB2(y;a,b,p=λ1/a,q=λ2/a)=λ1λ2y(λ1+λ2){(yb)λ1for 0<y<b(by)λ2for yb{\displaystyle ALL(y;b,\lambda _{1},\lambda _{2})=\lim _{a\rightarrow \infty }GB2(y;a,b,p=\lambda _{1}/a,q=\lambda _{2}/a)={\frac {\lambda _{1}\lambda _{2}}{y(\lambda _{1}+\lambda _{2})}}{\begin{cases}({\frac {y}{b}})^{\lambda _{1}}&{\mbox{for }}0<y<b\\({\frac {b}{y}})^{\lambda _{2}}&{\mbox{for }}y\geq b\end{cases}}}

where theh{\displaystyle h}th moments are given by

E(YALLh)=bhλ1λ2(λ1+h)(λ2h).{\displaystyle \operatorname {E} (Y_{ALL}^{h})={\frac {b^{h}\lambda _{1}\lambda _{2}}{(\lambda _{1}+h)(\lambda _{2}-h)}}.}

Whenλ1=λ2{\displaystyle \lambda _{1}=\lambda _{2}}, this is equivalent to thelog-Laplace distribution.

Exponential generalized beta distribution

[edit]

LettingYGB(y;a,b,c,p,q){\displaystyle Y\sim GB(y;a,b,c,p,q)} (without location parameter), the random variableZ=ln(Y){\displaystyle Z=\ln(Y)}, with re-parametrizationδ=ln(b){\displaystyle \delta =\ln(b)} andσ=1/a{\displaystyle \sigma =1/a}, is distributed as an exponential generalized beta (EGB), with the following pdf:

EGB(z;δ,σ,c,p,q)=ep(zδ)/σ(1(1c)e(zδ)/σ)q1|σ|B(p,q)(1+ce(zδ)/σ)p+q{\displaystyle EGB(z;\delta ,\sigma ,c,p,q)={\frac {e^{p(z-\delta )/\sigma }(1-(1-c)e^{(z-\delta )/\sigma })^{q-1}}{|\sigma |B(p,q)(1+ce^{(z-\delta )/\sigma })^{p+q}}}}

for<zδσ<ln(11c){\displaystyle -\infty <{\frac {z-\delta }{\sigma }}<\ln({\frac {1}{1-c}})}, and zero otherwise.The EGB includes generalizations of theGompertz,Gumbel,extreme value type I,logistic, Burr-2,exponential, andnormal distributions. The parameterδ=ln(b){\displaystyle \delta =\ln(b)} is thelocation parameter of the EGB (whileb{\displaystyle b} is thescale parameter of the GB), andσ=1/a{\displaystyle \sigma =1/a} is thescale parameter of the EGB (whilea{\displaystyle a} is ashape parameter of the GB); The EGB has thus threeshape parameters.

Included is a figure showing the relationship between the EGB and its special and limiting cases.[11]

The EGB family of distributions

Moment generating function

[edit]

Using similar notation as above, themoment-generating function of the EGB can be expressed as follows:

MEGB(Z)=eδtB(p+tσ,q)B(p,q)2F1[p+tσ,tσ;cp+q+tσ;].{\displaystyle M_{EGB}(Z)={\frac {e^{\delta t}B(p+t\sigma ,q)}{B(p,q)}}{}_{2}F_{1}{\begin{bmatrix}p+t\sigma ,t\sigma ;c\\p+q+t\sigma ;\end{bmatrix}}.}

Multivariate generalized beta distribution

[edit]

A multivariate generalized beta pdf extends the univariate distributions listed above. Forn{\displaystyle n} variablesy=(y1,...,yn){\displaystyle y=(y_{1},...,y_{n})}, define1xn{\displaystyle 1xn} parameter vectors bya=(a1,...,an){\displaystyle a=(a_{1},...,a_{n})},b=(b1,...,bn){\displaystyle b=(b_{1},...,b_{n})},c=(c1,...,cn){\displaystyle c=(c_{1},...,c_{n})}, andp=(p1,...,pn){\displaystyle p=(p_{1},...,p_{n})} where eachbi{\displaystyle b_{i}} andpi{\displaystyle p_{i}} is positive, and0{\displaystyle 0}{\displaystyle \leq }ci{\displaystyle c_{i}}{\displaystyle \leq }1{\displaystyle 1}. The parameterq{\displaystyle q} is assumed to be positive, and define the functionB(p1,...,pn,q){\displaystyle B(p_{1},...,p_{n},q)} =Γ(p1)...Γ(pn)Γ(q)Γ(p¯+q){\displaystyle {\frac {\Gamma (p_{1})...\Gamma (p_{n})\Gamma (q)}{\Gamma ({\bar {p}}+q)}}} forp¯{\displaystyle {\bar {p}}} =i=1npi{\displaystyle \sum _{i=1}^{n}p_{i}}.

The pdf of the multivariate generalized beta (MGB{\displaystyle MGB}) may be written as follows:

MGB(y;a,b,p,q,c)=(i=1n|ai|yiaipi1)(1i=1n(1ci)(yibi)ai)q1(i=1nbiaipi)B(p1,...,pn,q)(1+i=1nci(yibi)ai)p¯+q{\displaystyle MGB(y;a,b,p,q,c)={\frac {(\prod _{i=1}^{n}|a_{i}|y_{i}^{a_{i}p_{i}-1})(1-\sum _{i=1}^{n}(1-c_{i})({\frac {y_{i}}{b_{i}}})^{a_{i}})^{q-1}}{(\prod _{i=1}^{n}b_{i}^{a_{i}p_{i}})B(p_{1},...,p_{n},q)(1+\sum _{i=1}^{n}c_{i}({\frac {y_{i}}{b_{i}}})^{a_{i}})^{{\bar {p}}+q}}}}

where0{\displaystyle 0}<{\displaystyle <}i=1n(1ci)(yibi)ai{\displaystyle \sum _{i=1}^{n}(1-c_{i})({\frac {y_{i}}{b_{i}}})^{a_{i}}}<{\displaystyle <}1{\displaystyle 1} for0{\displaystyle 0}{\displaystyle \leq }ci{\displaystyle c_{i}}<{\displaystyle <}1{\displaystyle 1} and0{\displaystyle 0}<{\displaystyle <}yi{\displaystyle y_{i}} whenci{\displaystyle c_{i}} =1{\displaystyle 1}.

Like the univariate generalized beta distribution, the multivariate generalized beta includes several distributions in its family as special cases. By imposing certain constraints on the parameter vectors, the following distributions can be easily derived.[12]

Multivariate generalized beta of the first kind (MGB1)

[edit]

When eachci{\displaystyle c_{i}} is equal to 0, the MGB function simplifies to the multivariate generalized beta of the first kind (MGB1), which is defined by:

MGB1(y;a,b,p,q)=(i=1n|ai|yiaipi1)(1i=1n(yibi)ai)q1(i=1nbiaipi)B(p1,...,pn,q){\displaystyle MGB1(y;a,b,p,q)={\frac {(\prod _{i=1}^{n}|a_{i}|y_{i}^{a_{i}p_{i}-1})(1-\sum _{i=1}^{n}({\frac {y_{i}}{b_{i}}})^{a_{i}})^{q-1}}{(\prod _{i=1}^{n}b_{i}^{a_{i}p_{i}})B(p_{1},...,p_{n},q)}}}

where0{\displaystyle 0}<{\displaystyle <}i=1n(yibi)ai{\displaystyle \sum _{i=1}^{n}({\frac {y_{i}}{b_{i}}})^{a_{i}}}<{\displaystyle <}1{\displaystyle 1}.

Multivariate generalized beta of the second kind (MGB2)

[edit]

In the case where eachci{\displaystyle c_{i}} is equal to 1, the MGB simplifies to the multivariate generalized beta of the second kind (MGB2), with the pdf defined below:

MGB2(y;a,b,p,q)=(i=1n|ai|yiaipi1)(i=1nbiaipi)B(p1,...,pn,q)(1+i=1n(yibi)ai)p¯+q{\displaystyle MGB2(y;a,b,p,q)={\frac {(\prod _{i=1}^{n}|a_{i}|y_{i}^{a_{i}p_{i}-1})}{(\prod _{i=1}^{n}b_{i}^{a_{i}p_{i}})B(p_{1},...,p_{n},q)(1+\sum _{i=1}^{n}({\frac {y_{i}}{b_{i}}})^{a_{i}})^{{\bar {p}}+q}}}}

when0{\displaystyle 0}<{\displaystyle <}yi{\displaystyle y_{i}} for allyi{\displaystyle y_{i}}.

Multivariate generalized gamma

[edit]

The multivariate generalized gamma (MGG) pdf can be derived from the MGB pdf by substitutingbi{\displaystyle b_{i}} =βiq1ai{\displaystyle \beta _{i}q^{\frac {1}{a_{i}}}} and taking the limit asq{\displaystyle q}{\displaystyle \to }{\displaystyle \infty }, with Stirling's approximation for the gamma function, yielding the following function:

MGG(y;a,β,p)=((i=1n|ai|yiaipi1)(i=1nβiaipi)Γ(pi))ei=1n(yiβi)ai=i=1nGG(yi;ai,βi,pi){\displaystyle MGG(y;a,\beta ,p)=({\frac {(\prod _{i=1}^{n}|a_{i}|y_{i}^{a_{i}p_{i}-1})}{(\prod _{i=1}^{n}\beta _{i}^{a_{i}p_{i}})\Gamma (p_{i})}})e^{-\sum _{i=1}^{n}({\frac {y_{i}}{\beta _{i}}})^{a_{i}}}=\prod _{i=1}^{n}GG(y_{i};a_{i},\beta _{i},p_{i})}

which is the product of independently but not necessarily identically distributed generalized gamma random variables.

Other multivariate distributions

[edit]

Similar pdfs can be constructed for other variables in the family tree shown above, simply by placing an M in front of each pdf name and finding the appropriate limiting and special cases of the MGB as indicated by the constraints and limits of the univariate distribution. Additional multivariate pdfs in the literature include theDirichlet distribution (standard form) given byMGB1(y;a=1,b=1,p,q){\displaystyle MGB1(y;a=1,b=1,p,q)}, themultivariate inverted beta andinverted Dirichlet (Dirichlet type 2) distribution given byMGB2(y;a=1,b=1,p,q){\displaystyle MGB2(y;a=1,b=1,p,q)}, and the multivariate Burr distribution given byMGB2(y;a,b,p,q=1){\displaystyle MGB2(y;a,b,p,q=1)}.

Marginal density functions

[edit]

The marginal density functions of the MGB1 and MGB2, respectively, are the generalized beta distributions of the first and second kind, and are given as follows:

GB1(yi;ai,bi,pi,p¯pi+q)=|ai|yiaipi1(1(yibi)ai)p¯pi+q1biaipiB(pi,p¯pi+q){\displaystyle GB1(y_{i};a_{i},b_{i},p_{i},{\bar {p}}-p_{i}+q)={\frac {|a_{i}|y_{i}^{a_{i}p_{i}-1}(1-({\frac {y_{i}}{b_{i}}})^{a_{i}})^{{\bar {p}}-p_{i}+q-1}}{b_{i}^{a_{i}p_{i}}B(p_{i},{\bar {p}}-p_{i}+q)}}}
GB2(yi;ai,bi,pi,q)=|ai|yiaipi1biaipiB(pi,q)(1+(yibi)ai)pi+q{\displaystyle GB2(y_{i};a_{i},b_{i},p_{i},q)={\frac {|a_{i}|y_{i}^{a_{i}p_{i}-1}}{b_{i}^{a_{i}p_{i}}B(p_{i},q)(1+({\frac {y_{i}}{b_{i}}})^{a_{i}})^{p_{i}+q}}}}

Applications

[edit]

The flexibility provided by the GB family is used in modeling the distribution of:

  • distribution of income
  • hazard functions
  • stock returns
  • insurance losses

Applications involving members of the EGB family include:[1][6]

  • partially adaptive estimation of regression models
  • time series models
  • (G)ARCH models

Distribution of Income

[edit]

The GB2 and several of its special and limiting cases have been widely used as models for the distribution of income. For some early examples see Thurow (1970),[13] Dagum (1977),[14] Singh and Maddala (1976),[15] and McDonald (1984).[6]Maximum likelihood estimations using individual, grouped, or top-coded data are easily performed with these distributions.

Measures of inequality, such as theGini index (G), Pietra index (P), andTheil index (T) can be expressed in terms of the distributional parameters, as given by McDonald and Ransom (2008):[16]

G=(12μ)E(|YX|)=(P12μ)00|xy|f(x)f(y)dxdy=10(1F(y))2dy0(1F(y))dyP=(12μ)E(|Yμ|)=(12μ)0|yμ|f(y)dyT=E(ln(Y/μ)Y/μ)=0(y/μ)ln(y/μ)f(y)dy{\displaystyle {\begin{aligned}G=\left({\frac {1}{2\mu }}\right)\operatorname {E} (|Y-X|)=\left(P{\frac {1}{2\mu }}\right)\int _{0}^{\infty }\int _{0}^{\infty }|x-y|f(x)f(y)\,dxdy\\=1-{\frac {\int _{0}^{\infty }(1-F(y))^{2}\,dy}{\int _{0}^{\infty }(1-F(y))\,dy}}\\P=\left({\frac {1}{2\mu }}\right)\operatorname {E} (|Y-\mu |)=\left({\frac {1}{2\mu }}\right)\int _{0}^{\infty }|y-\mu |f(y)\,dy\\T=\operatorname {E} (\ln(Y/\mu )^{Y/\mu })=\int _{0}^{\infty }(y/\mu )\ln(y/\mu )f(y)\,dy\end{aligned}}}

Hazard Functions

[edit]

Thehazard function, h(s), where f(s) is a pdf and F(s) the corresponding cdf, is defined by

h(s)=f(s)1F(s){\displaystyle h(s)={\frac {f(s)}{1-F(s)}}}

Hazard functions are useful in many applications, such as modeling unemployment duration, the failure time of products or life expectancy. Taking a specific example, if s denotes the length of life, then h(s) is the rate of death at age s, given that an individual has lived up to age s. The shape of the hazard function for human mortality data might appear as follows: decreasing mortality in the first few months of life, then a period of relatively constant mortality and finally an increasing probability of death at older ages.

Special cases of thegeneralized beta distribution offer more flexibility in modeling the shape of the hazard function, which can call for "∪" or "∩" shapes or strictly increasing (denoted by I}) or decreasing (denoted by D) lines. Thegeneralized gamma is "∪"-shaped for a>1 and p<1/a, "∩"-shaped for a<1 and p>1/a, I-shaped for a>1 and p>1/a and D-shaped for a<1 and p>1/a.[17] This is summarized in the figure below.[18][19]

Possible hazard function shapes using the generalized gamma

References

[edit]
  1. ^abcMcDonald, James B. & Xu, Yexiao J. (1995) "A generalization of the beta distribution with applications,"Journal of Econometrics, 66(1–2), 133–152doi:10.1016/0304-4076(94)01612-4
  2. ^Patil, G.P., Boswell, M.T., and Ratnaparkhi, M.V., Dictionary and Classified Bibliography of Statistical Distributions in Scientific Work Series, editor G.P. Patil, Internal Co-operative Publishing House, Burtonsville, Maryland, 1984.
  3. ^Venter, G., Transformed beta and gamma distributions and aggregate losses, Proceedings of the Casualty Actuarial Society, 1983.
  4. ^Kalbfleisch, J.D. and R.L. Prentice, The Statistical Analysis of Failure Time Data, New York: J. Wiley, 1980
  5. ^Arnold, B.C., Pareto Distributions, Volume 5 in Statistical Distributions in Scientific Work Series, International Co-operative Publishing House, Burtonsville, Md. 1983.
  6. ^abcMcDonald, J.B. (1984) "Some generalized functions for the size distributions of income",Econometrica 52, 647–663.
  7. ^Stuart, A. and Ord, J.K. (1987): Kendall's Advanced Theory of Statistics, New York: Oxford University Press.
  8. ^Stacy, E.W. (1962). "A Generalization of the Gamma Distribution."Annals of Mathematical Statistics 33(3): 1187-1192.JSTOR 2237889
  9. ^Reed, W.J. (2001). "The Pareto, Zipf, and other power laws."Economics Letters 74: 15-19.doi:10.1016/S0165-1765(01)00524-9
  10. ^Higbee, J.D., Jensen, J.E., and McDonald, J.B. (2019). "The asymmetric log-Laplace distribution as a limiting case of the generalized beta distribution."Statistics and Probability Letters 151: 73-78.doi:10.1016/j.spl.2019.03.018
  11. ^McDonald, James B. & Kerman, Sean C. (2013) "Skewness-Kurtosis Bounds for EGB1, EGB2, and Special Cases,"Forthcoming
  12. ^William M. Cockriel & James B. McDonald (2017): Two multivariate generalized beta families, Communications in Statistics - Theory and Methods,doi:10.1080/03610926.2017.1400058
  13. ^Thurow, L.C. (1970) "Analyzing the American Income Distribution,"Papers and Proceedings, American Economics Association, 60, 261-269
  14. ^Dagum, C. (1977) "A New Model for Personal Income Distribution: Specification and Estimation,"Economie Applique'e, 30, 413-437
  15. ^Singh, S.K. and Maddala, G.S (1976) "A Function for the Size Distribution of Incomes,"Econometrica, 44, 963-970
  16. ^McDonald, J.B. and Ransom, M. (2008) "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality",Modeling the Distributions and Lorenz Curves, "Economic Studies in Inequality: Social Exclusion and Well-Being", Springer: New York editor Jacques Silber, 5, 147-166
  17. ^Glaser, Ronald E. (1980) "Bathtub and Related Failure Rate Characterizations,"Journal of the American Statistical Association, 75(371), 667-672doi:10.1080/01621459.1980.10477530
  18. ^McDonald, James B. (1987) "A general methodology for determining distributional forms with applications in reliability,"Journal of Statistical Planning and Inference, 16, 365-376doi:10.1016/0378-3758(87)90089-9
  19. ^McDonald, J.B. and Richards, D.O. (1987) "Hazard Functions and Generalized Beta Distributions",IEEE Transactions on Reliability, 36, 463-466

Bibliography

[edit]
  • C. Kleiber and S. Kotz (2003)Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley
  • Johnson, N. L., S. Kotz, and N. Balakrishnan (1994)Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_beta_distribution&oldid=1318339505"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp