Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gell-Mann matrices

From Wikipedia, the free encyclopedia
Basis for the SU(3) Lie algebra

TheGell-Mann matrices, developed byMurray Gell-Mann, are a set of eightlinearly independent 3×3tracelessHermitian matrices used in the study of thestrong interaction inparticle physics.They span theLie algebra of theSU(3) group in the defining representation.

Matrices

[edit]
λ1=(010100000){\displaystyle \lambda _{1}={\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}}}λ2=(0i0i00000){\displaystyle \lambda _{2}={\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}}}λ3=(100010000){\displaystyle \lambda _{3}={\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}}}
λ4=(001000100){\displaystyle \lambda _{4}={\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix}}}λ5=(00i000i00){\displaystyle \lambda _{5}={\begin{pmatrix}0&0&-i\\0&0&0\\i&0&0\end{pmatrix}}}
λ6=(000001010){\displaystyle \lambda _{6}={\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}}}λ7=(00000i0i0){\displaystyle \lambda _{7}={\begin{pmatrix}0&0&0\\0&0&-i\\0&i&0\end{pmatrix}}}λ8=13(100010002).{\displaystyle \lambda _{8}={\frac {1}{\sqrt {3}}}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&-2\end{pmatrix}}.}

Properties

[edit]
Main article:Generalizations of Pauli matrices

These matrices aretraceless,Hermitian, and obey the extra trace orthonormality relation, so they can generateunitary matrix group elements ofSU(3) throughexponentiation.[1] These properties were chosen by Gell-Mann because they then naturally generalize thePauli matrices forSU(2) to SU(3), which formed the basis for Gell-Mann'squark model.[2] Gell-Mann's generalization furtherextends to general SU(n). For their connection to thestandard basis of Lie algebras, see theWeyl–Cartan basis.

Trace orthonormality

[edit]

In mathematics, orthonormality typically implies a norm which has a value of unity (1). Gell-Mann matrices, however, are normalized to a value of 2. Thus, thetrace of the pairwise product results in the ortho-normalization condition

tr(λiλj)=2δij,{\displaystyle \operatorname {tr} (\lambda _{i}\lambda _{j})=2\delta _{ij},}

whereδij{\displaystyle \delta _{ij}} is theKronecker delta.

This is so the embedded Pauli matrices corresponding to the three embedded subalgebras ofSU(2) are conventionally normalized. In this three-dimensional matrix representation, theCartan subalgebra is the set of linear combinations (with real coefficients) of the two matricesλ3{\displaystyle \lambda _{3}} andλ8{\displaystyle \lambda _{8}}, which commute with each other.

There are threesignificantSU(2) subalgebras:

where thex andy are linear combinations ofλ3{\displaystyle \lambda _{3}} andλ8{\displaystyle \lambda _{8}}. The SU(2)Casimirs of these subalgebras mutually commute.

However, any unitary similarity transformation of these subalgebras will yield SU(2) subalgebras. There is an uncountable number of such transformations.

Commutation relations

[edit]

The 8 generators of SU(3) satisfy thecommutation and anti-commutation relations[3]

[λa,λb]=2icfabcλc,{λa,λb}=43δabI+2cdabcλc,{\displaystyle {\begin{aligned}\left[\lambda _{a},\lambda _{b}\right]&=2i\sum _{c}f_{abc}\lambda _{c},\\\{\lambda _{a},\lambda _{b}\}&={\frac {4}{3}}\delta _{ab}I+2\sum _{c}d_{abc}\lambda _{c},\end{aligned}}}

with thestructure constants

fabc=14itr(λa[λb,λc]),dabc=14tr(λa{λb,λc}).{\displaystyle {\begin{aligned}f_{abc}&=-{\frac {1}{4}}i\operatorname {tr} (\lambda _{a}[\lambda _{b},\lambda _{c}]),\\d_{abc}&={\frac {1}{4}}\operatorname {tr} (\lambda _{a}\{\lambda _{b},\lambda _{c}\}).\end{aligned}}}

Thestructure constantsdabc{\displaystyle d_{abc}} are completely symmetric in the three indices. Thestructure constantsfabc{\displaystyle f_{abc}} are completely antisymmetric in the three indices, generalizing the antisymmetry of theLevi-Civita symbolϵjkl{\displaystyle \epsilon _{jkl}} ofSU(2). For the present order of Gell-Mann matrices they take the values

f123=1 ,f147=f165=f246=f257=f345=f376=12 ,f458=f678=32 .{\displaystyle f_{123}=1\ ,\quad f_{147}=f_{165}=f_{246}=f_{257}=f_{345}=f_{376}={\frac {1}{2}}\ ,\quad f_{458}=f_{678}={\frac {\sqrt {3}}{2}}\ .}

In general, they evaluate to zero, unless they contain an odd count of indices from the set {2,5,7}, corresponding to the antisymmetric (imaginary)λs.

Using these commutation relations, the product of Gell-Mann matrices can be written as

λaλb=12([λa,λb]+{λa,λb})=23δabI+c(dabc+ifabc)λc,{\displaystyle \lambda _{a}\lambda _{b}={\frac {1}{2}}([\lambda _{a},\lambda _{b}]+\{\lambda _{a},\lambda _{b}\})={\frac {2}{3}}\delta _{ab}I+\sum _{c}\left(d_{abc}+if_{abc}\right)\lambda _{c},}

whereI is the 3×3 identity matrix.

Fierz completeness relations

[edit]

Since the eight matrices and the identity are a complete trace-orthogonal set spanning all 3×3 matrices, it is straightforward to find two Fierzcompleteness relations, (Li & Cheng, 4.134), analogous to thatsatisfied by the Pauli matrices. Namely, using the dot to sum over the eight matrices and using Greek indices for their row/column indices, the following identities hold,

δβαδδγ=13δδαδβγ+12λδαλβγ{\displaystyle \delta _{\beta }^{\alpha }\delta _{\delta }^{\gamma }={\frac {1}{3}}\delta _{\delta }^{\alpha }\delta _{\beta }^{\gamma }+{\frac {1}{2}}\lambda _{\delta }^{\alpha }\cdot \lambda _{\beta }^{\gamma }}

and

λβαλδγ=169δδαδβγ13λδαλβγ .{\displaystyle \lambda _{\beta }^{\alpha }\cdot \lambda _{\delta }^{\gamma }={\frac {16}{9}}\delta _{\delta }^{\alpha }\delta _{\beta }^{\gamma }-{\frac {1}{3}}\lambda _{\delta }^{\alpha }\cdot \lambda _{\beta }^{\gamma }~.}

One may prefer the recast version, resulting from a linear combination of the above,

λβαλδγ=2δδαδβγ23δβαδδγ .{\displaystyle \lambda _{\beta }^{\alpha }\cdot \lambda _{\delta }^{\gamma }=2\delta _{\delta }^{\alpha }\delta _{\beta }^{\gamma }-{\frac {2}{3}}\delta _{\beta }^{\alpha }\delta _{\delta }^{\gamma }~.}

Representation theory

[edit]
Main article:Clebsch–Gordan coefficients for SU(3)

A particular choice of matrices is called agroup representation, because any element of SU(3) can be written in the formexp(iθjgj){\displaystyle \mathrm {exp} (i\theta ^{j}g_{j})} using theEinstein notation, where the eightθj{\displaystyle \theta ^{j}} are real numbers and a sum over the indexj is implied. Given one representation, an equivalent one may be obtained by an arbitrary unitary similarity transformation, since that leaves the commutator unchanged.

The matrices can be realized as a representation of theinfinitesimal generators of thespecial unitary group calledSU(3). TheLie algebra of this group (a real Lie algebra in fact) has dimension eight and therefore it has some set with eightlinearly independent generators, which can be written asgi{\displaystyle g_{i}}, withi taking values from 1 to 8.[1]

Casimir operators and invariants

[edit]

The squared sum of the Gell-Mann matrices gives the quadraticCasimir operator, a group invariant,

C=i=18λiλi=163I{\displaystyle C=\sum _{i=1}^{8}\lambda _{i}\lambda _{i}={\frac {16}{3}}I}

whereI{\displaystyle I\,}is 3×3 identity matrix. There is another, independent,cubic Casimir operator, as well.

Application to quantum chromodynamics

[edit]
Main articles:Color charge andQuantum chromodynamics

These matrices serve to study the internal (color) rotations of thegluon fields associated with the coloured quarks ofquantum chromodynamics (cf.colours of the gluon). A gauge colour rotation is a spacetime-dependent SU(3) group elementU=exp( i 2 θk(r,t) λk),{\displaystyle \;U=\exp \left({\frac {\ i\ }{2}}\ \theta ^{k}({\mathbf {r} },t)\ \lambda _{k}\right)\;,} where summation over the eight indicesk is implied.

See also:Clebsch–Gordan coefficients for SU(3)

See also

[edit]

References

[edit]
  1. ^abStefan Scherer; Matthias R. Schindler (31 May 2005). "A Chiral Perturbation Theory Primer". p. 1–2.arXiv:hep-ph/0505265.
  2. ^David Griffiths (2008).Introduction to Elementary Particles (2nd ed.).John Wiley & Sons. pp. 283–288,366–369.ISBN 978-3-527-40601-2.
  3. ^Haber, Howard."Properties of the Gell-Mann matrices"(PDF).Physics 251 Group Theory and Modern Physics. U.C. Santa Cruz. Archived fromthe original(PDF) on 2022-10-06.
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gell-Mann_matrices&oldid=1322441259"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp