Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gaussian units

From Wikipedia, the free encyclopedia
Variant of the centimetre–gram–second unit system

Carl Friedrich Gauss

Gaussian units constitute ametric system ofunits of measurement. This system is the most common of the several electromagnetic unit systems based on thecentimetre–gram–second system of units (CGS). It is also called theGaussian unit system,Gaussian-cgs units, or often justcgs units.[a] The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of CGS, which have conflicting definitions of electromagnetic quantities and units.

SI units predominate in most fields, and continue to increase in popularity at the expense of Gaussian units.[1][b] Alternative unit systems also exist. Conversions between quantities in the Gaussian and SI systems arenot direct unit conversions, because the quantities themselves are defined differently in each system. This means that the equations that express physical laws of electromagnetism—such asMaxwell's equations—will change depending on the system of quantities that is employed. As an example, quantities that aredimensionless in one system may have dimension in the other.

Alternative unit systems

[edit]
Main article:Alternative CGS units in electromagnetism

The Gaussian unit system is just one of several electromagnetic unit systems within CGS. Others include "electrostatic units", "electromagnetic units", andHeaviside–Lorentz units.

Some other unit systems are called "natural units", a category that includesatomic units,Planck units, and others.

TheInternational System of Units (SI), with the associatedInternational System of Quantities (ISQ), is by far the most common system of units today. Inengineering and practical areas, SI is nearly universal and has been for decades.[1] In technical, scientific literature (such astheoretical physics andastronomy), Gaussian units were predominant until recent decades, but are now getting progressively less so.[1][b] The 8th SI Brochure mentions the CGS-Gaussian unit system,[2] but the 9th SI Brochure makes no mention of CGS systems.

Natural units may be used in more theoretical and abstract fields of physics, particularlyparticle physics andstring theory.

Major differences between Gaussian and SI systems

[edit]

Rationalized unit systems

[edit]

One difference between the Gaussian and SI systems is in the factor4π in various formulas that relate the quantities that they define. With SI electromagnetic units, calledrationalized,[3][4]Maxwell's equations have no explicit factors of4π in the formulae, whereas theinverse-square force laws –Coulomb's law and theBiot–Savart lawdo have a factor of4π attached to ther2. With Gaussian units, calledunrationalized (and unlikeHeaviside–Lorentz units), the situation is reversed: two of Maxwell's equations have factors of4π in the formulas, while both of the inverse-square force laws, Coulomb's law and the Biot–Savart law, have no factor of4π attached tor2 in the denominator.

(The quantity4π appears because4πr2 is thesurface area of the sphere of radiusr, which reflects the geometry of the configuration. For details, see the articlesRelation between Gauss's law and Coulomb's law andInverse-square law.)

Unit of charge

[edit]

A major difference between the Gaussian system and the ISQ is in the respective definitions of the quantity charge. In the ISQ, a separate base dimension, electric current, with the associated SI unit, theampere, is associated with electromagnetic phenomena, with the consequence that a unit of electrical charge (1 coulomb = 1 ampere × 1 second) is a physical quantity that cannot be expressed purely in terms of the mechanical units (kilogram, metre, second). On the other hand, in the Gaussian system, the unit of electric charge (thestatcoulomb, statC)can be written entirely as a dimensional combination of the non-electrical base units (gram, centimetre, second), as:

1 statC =1 g1/2⋅cm3/2⋅s−1.

For example,Coulomb's law in Gaussian units has no constant:F=Q1GQ2Gr2,{\displaystyle F={\frac {Q_{1}^{_{\mathrm {G} }}Q_{2}^{_{\mathrm {G} }}}{r^{2}}},}whereF is the repulsive force between two electrical charges,QG
1
andQG
2
are the two charges in question, andr is the distance separating them. IfQG
1
andQG
2
are expressed instatC andr incentimetres, then the unit ofF that is coherent with these units is thedyne.

The same law in the ISQ is:F=14πε0Q1IQ2Ir2{\displaystyle F={\frac {1}{4\pi \varepsilon _{0}}}{\frac {Q_{1}^{_{\mathrm {I} }}Q_{2}^{_{\mathrm {I} }}}{r^{2}}}}whereε0 is thevacuum permittivity, a quantity that is not dimensionless: it has dimension (charge)2 (time)2 (mass)−1 (length)−3. Withoutε0, the equation would be dimensionally inconsistent with the quantities as defined in the ISQ, whereas the quantityε0 does not appear in Gaussian equations. This is an example of how some dimensionalphysical constants can be eliminated from the expressions ofphysical law by the choice of definition of quantities. In the ISQ,1/ε0 converts or scaleselectric flux density,D, to the correspondingelectric field,E (the latter has dimension offorce percharge), while in the Gaussian system, electric flux density is the same quantity as electric field strength infree space aside from a dimensionless constant factor.

In the Gaussian system, thespeed of lightc appears directly in electromagnetic formulas likeMaxwell's equations (see below), whereas in the ISQ it appears via the productμ0ε0 = 1/c2.

Units for magnetism

[edit]

In the Gaussian system, unlike the ISQ, the electric fieldEG and themagnetic fieldBG have the same dimension. This amounts to a factor ofc between howB is defined in the two unit systems, on top of the other differences.[3] (The same factor applies to other magnetic quantities such as themagnetic field,H, andmagnetization,M.) For example, in aplanar light wave in vacuum,|EG(r,t)| = |BG(r,t)| in Gaussian units, while|EI(r,t)| =c |BI(r,t)| in the ISQ.

Polarization, magnetization

[edit]

There are further differences between Gaussian system and the ISQ in how quantities related to polarization and magnetization are defined. For one thing, in the Gaussian system,all of the following quantities have the same dimension:EG,DG,PG,BG,HG, andMG. A further point is that theelectric andmagnetic susceptibility of a material is dimensionless in both the Gaussian system and the ISQ, but a given material will have a different numerical susceptibility in the two systems. (Equation is given below.)

List of equations

[edit]

This section has a list of the basic formulae of electromagnetism, given in both the Gaussian system and theInternational System of Quantities (ISQ). Most symbol names are not given; for complete explanations and definitions, please click to the appropriate dedicated article for each equation. A simple conversion scheme for use when tables are not available may be found in Garg (2012).[5]All formulas except otherwise noted are from Ref.[3]

Maxwell's equations

[edit]
Main article:Maxwell's equations

Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms, apply thedivergence theorem orKelvin–Stokes theorem.

Maxwell's equations in Gaussian system and ISQ
NameGaussian systemISQ
Gauss's law
(macroscopic)
DG=4πρfG{\displaystyle \nabla \cdot \mathbf {D} ^{_{\mathrm {G} }}=4\pi \rho _{\mathrm {f} }^{_{\mathrm {G} }}}DI=ρfI{\displaystyle \nabla \cdot \mathbf {D} ^{_{\mathrm {I} }}=\rho _{\mathrm {f} }^{_{\mathrm {I} }}}
Gauss's law
(microscopic)
EG=4πρG{\displaystyle \nabla \cdot \mathbf {E} ^{_{\mathrm {G} }}=4\pi \rho ^{_{\mathrm {G} }}}EI=1ε0ρI{\displaystyle \nabla \cdot \mathbf {E} ^{_{\mathrm {I} }}={\frac {1}{\varepsilon _{0}}}\rho ^{_{\mathrm {I} }}}
Gauss's law for magnetismBG=0{\displaystyle \nabla \cdot \mathbf {B} ^{_{\mathrm {G} }}=0}BI=0{\displaystyle \nabla \cdot \mathbf {B} ^{_{\mathrm {I} }}=0}
Maxwell–Faraday equation
(Faraday's law of induction)
×EG+1cBGt=0{\displaystyle \nabla \times \mathbf {E} ^{_{\mathrm {G} }}+{\frac {1}{c}}{\frac {\partial \mathbf {B} ^{_{\mathrm {G} }}}{\partial t}}=0}×EI+BIt=0{\displaystyle \nabla \times \mathbf {E} ^{_{\mathrm {I} }}+{\frac {\partial \mathbf {B} ^{_{\mathrm {I} }}}{\partial t}}=0}
Ampère–Maxwell equation
(macroscopic)
×HG1cDGt=4πcJfG{\displaystyle \nabla \times \mathbf {H} ^{_{\mathrm {G} }}-{\frac {1}{c}}{\frac {\partial \mathbf {D} ^{_{\mathrm {G} }}}{\partial t}}={\frac {4\pi }{c}}\mathbf {J} _{\mathrm {f} }^{_{\mathrm {G} }}}×HIDIt=JfI{\displaystyle \nabla \times \mathbf {H} ^{_{\mathrm {I} }}-{\frac {\partial \mathbf {D} ^{_{\mathrm {I} }}}{\partial t}}=\mathbf {J} _{\mathrm {f} }^{_{\mathrm {I} }}}
Ampère–Maxwell equation
(microscopic)
×BG1cEGt=4πcJG{\displaystyle \nabla \times \mathbf {B} ^{_{\mathrm {G} }}-{\frac {1}{c}}{\frac {\partial \mathbf {E} ^{_{\mathrm {G} }}}{\partial t}}={\frac {4\pi }{c}}\mathbf {J} ^{_{\mathrm {G} }}}×BI1c2EIt=μ0JI{\displaystyle \nabla \times \mathbf {B} ^{_{\mathrm {I} }}-{\frac {1}{c^{2}}}{\frac {\partial \mathbf {E} ^{_{\mathrm {I} }}}{\partial t}}=\mu _{0}\mathbf {J} ^{_{\mathrm {I} }}}

Other basic laws

[edit]
Other electromagnetic laws in Gaussian system and ISQ
NameGaussian systemISQ
Lorentz forceF=qG(EG+1cv×BG){\displaystyle \mathbf {F} =q^{_{\mathrm {G} }}\,\left(\mathbf {E} ^{_{\mathrm {G} }}+{\tfrac {1}{c}}\,\mathbf {v} \times \mathbf {B} ^{_{\mathrm {G} }}\right)}F=qI(EI+v×BI){\displaystyle \mathbf {F} =q^{_{\mathrm {I} }}\,\left(\mathbf {E} ^{_{\mathrm {I} }}+\mathbf {v} \times \mathbf {B} ^{_{\mathrm {I} }}\right)}
Coulomb's lawF=q1Gq2Gr2r^{\displaystyle \mathbf {F} ={\frac {q_{1}^{_{\mathrm {G} }}q_{2}^{_{\mathrm {G} }}}{r^{2}}}\,\mathbf {\hat {r}} }F=14πε0q1Iq2Ir2r^{\displaystyle \mathbf {F} ={\frac {1}{4\pi \varepsilon _{0}}}\,{\frac {q_{1}^{_{\mathrm {I} }}q_{2}^{_{\mathrm {I} }}}{r^{2}}}\,\mathbf {\hat {r}} }
Electric field of
stationary point charge
EG=qGr2r^{\displaystyle \mathbf {E} ^{_{\mathrm {G} }}={\frac {q^{_{\mathrm {G} }}}{r^{2}}}\,\mathbf {\hat {r}} }EI=14πε0qIr2r^{\displaystyle \mathbf {E} ^{_{\mathrm {I} }}={\frac {1}{4\pi \varepsilon _{0}}}\,{\frac {q^{_{\mathrm {I} }}}{r^{2}}}\,\mathbf {\hat {r}} }
Biot–Savart law[6]BG=1cIG×r^r2d{\displaystyle \mathbf {B} ^{_{\mathrm {G} }}={\frac {1}{c}}\!\oint {\frac {I^{_{\mathrm {G} }}\times \mathbf {\hat {r}} }{r^{2}}}\,\operatorname {d} \!\mathbf {\boldsymbol {\ell }} }BI=μ04πII×r^r2d{\displaystyle \mathbf {B} ^{_{\mathrm {I} }}={\frac {\mu _{0}}{4\pi }}\!\oint {\frac {I^{_{\mathrm {I} }}\times \mathbf {\hat {r}} }{r^{2}}}\,\operatorname {d} \!\mathbf {\boldsymbol {\ell }} }
Poynting vector
(microscopic)
S=c4πEG×BG{\displaystyle \mathbf {S} ={\frac {c}{4\pi }}\,\mathbf {E} ^{_{\mathrm {G} }}\times \mathbf {B} ^{_{\mathrm {G} }}}S=1μ0EI×BI{\displaystyle \mathbf {S} ={\frac {1}{\mu _{0}}}\,\mathbf {E} ^{_{\mathrm {I} }}\times \mathbf {B} ^{_{\mathrm {I} }}}

Dielectric and magnetic materials

[edit]

Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that thepermittivity is a simple constant.

Expressions for fields in dielectric media
Gaussian systemISQ
DG=EG+4πPG{\displaystyle \mathbf {D} ^{_{\mathrm {G} }}=\mathbf {E} ^{_{\mathrm {G} }}+4\pi \mathbf {P} ^{_{\mathrm {G} }}}DI=ε0EI+PI{\displaystyle \mathbf {D} ^{_{\mathrm {I} }}=\varepsilon _{0}\mathbf {E} ^{_{\mathrm {I} }}+\mathbf {P} ^{_{\mathrm {I} }}}
PG=χeGEG{\displaystyle \mathbf {P} ^{_{\mathrm {G} }}=\chi _{\mathrm {e} }^{_{\mathrm {G} }}\mathbf {E} ^{_{\mathrm {G} }}}PI=χeIε0EI{\displaystyle \mathbf {P} ^{_{\mathrm {I} }}=\chi _{\mathrm {e} }^{_{\mathrm {I} }}\varepsilon _{0}\mathbf {E} ^{_{\mathrm {I} }}}
DG=εGEG{\displaystyle \mathbf {D} ^{_{\mathrm {G} }}=\varepsilon ^{_{\mathrm {G} }}\mathbf {E} ^{_{\mathrm {G} }}}DI=εIEI{\displaystyle \mathbf {D} ^{_{\mathrm {I} }}=\varepsilon ^{_{\mathrm {I} }}\mathbf {E} ^{_{\mathrm {I} }}}
εG=1+4πχeG{\displaystyle \varepsilon ^{_{\mathrm {G} }}=1+4\pi \chi _{\mathrm {e} }^{_{\mathrm {G} }}}εI/ε0=1+χeI{\displaystyle \varepsilon ^{_{\mathrm {I} }}/\varepsilon _{0}=1+\chi _{\mathrm {e} }^{_{\mathrm {I} }}}

where

The quantitiesεG{\displaystyle \varepsilon ^{_{\mathrm {G} }}} andεI/ε0{\displaystyle \varepsilon ^{_{\mathrm {I} }}/\varepsilon _{0}} are both dimensionless, and they have the same numeric value. By contrast, theelectric susceptibilityχeG{\displaystyle \chi _{\mathrm {e} }^{_{\mathrm {G} }}} andχeI{\displaystyle \chi _{\mathrm {e} }^{_{\mathrm {I} }}} are both unitless, but havedifferent numeric values for the same material:4πχeG=χeI.{\displaystyle 4\pi \chi _{\mathrm {e} }^{_{\mathrm {G} }}=\chi _{\mathrm {e} }^{_{\mathrm {I} }}\,.}

Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that thepermeability is a simple constant.

Expressions for fields in magnetic media
Gaussian systemISQ
BG=HG+4πMG{\displaystyle \mathbf {B} ^{_{\mathrm {G} }}=\mathbf {H} ^{_{\mathrm {G} }}+4\pi \mathbf {M} ^{_{\mathrm {G} }}}BI=μ0(HI+MI){\displaystyle \mathbf {B} ^{_{\mathrm {I} }}=\mu _{0}(\mathbf {H} ^{_{\mathrm {I} }}+\mathbf {M} ^{_{\mathrm {I} }})}
MG=χmGHG{\displaystyle \mathbf {M} ^{_{\mathrm {G} }}=\chi _{\mathrm {m} }^{_{\mathrm {G} }}\mathbf {H} ^{_{\mathrm {G} }}}MI=χmIHI{\displaystyle \mathbf {M} ^{_{\mathrm {I} }}=\chi _{\mathrm {m} }^{_{\mathrm {I} }}\mathbf {H} ^{_{\mathrm {I} }}}
BG=μGHG{\displaystyle \mathbf {B} ^{_{\mathrm {G} }}=\mu ^{_{\mathrm {G} }}\mathbf {H} ^{_{\mathrm {G} }}}BI=μIHI{\displaystyle \mathbf {B} ^{_{\mathrm {I} }}=\mu ^{_{\mathrm {I} }}\mathbf {H} ^{_{\mathrm {I} }}}
μG=1+4πχmG{\displaystyle \mu ^{_{\mathrm {G} }}=1+4\pi \chi _{\mathrm {m} }^{_{\mathrm {G} }}}μI/μ0=1+χmI{\displaystyle \mu ^{_{\mathrm {I} }}/\mu _{0}=1+\chi _{\mathrm {m} }^{_{\mathrm {I} }}}

where

The quantitiesμG{\displaystyle \mu ^{_{\mathrm {G} }}} andμI/μ0{\displaystyle \mu ^{_{\mathrm {I} }}/\mu _{0}} are both dimensionless, and they have the same numeric value. By contrast, themagnetic susceptibilityχmG{\displaystyle \chi _{\mathrm {m} }^{_{\mathrm {G} }}} andχmI{\displaystyle \chi _{\mathrm {m} }^{_{\mathrm {I} }}} are both unitless, but hasdifferent numeric values in the two systems for the same material:4πχmG=χmI{\displaystyle 4\pi \chi _{\mathrm {m} }^{_{\mathrm {G} }}=\chi _{\mathrm {m} }^{_{\mathrm {I} }}}

Vector and scalar potentials

[edit]
Main articles:Magnetic vector potential andElectric potential

The electric and magnetic fields can be written in terms of a vector potentialA and a scalar potentialϕ:

Electromagnetic fields in Gaussian system and ISQ
NameGaussian systemISQ
Electric fieldEG=ϕG1cAGt{\displaystyle \mathbf {E} ^{_{\mathrm {G} }}=-\nabla \phi ^{_{\mathrm {G} }}-{\frac {1}{c}}{\frac {\partial \mathbf {A} ^{_{\mathrm {G} }}}{\partial t}}}EI=ϕIAIt{\displaystyle \mathbf {E} ^{_{\mathrm {I} }}=-\nabla \phi ^{_{\mathrm {I} }}-{\frac {\partial \mathbf {A} ^{_{\mathrm {I} }}}{\partial t}}}
MagneticB fieldBG=×AG{\displaystyle \mathbf {B} ^{_{\mathrm {G} }}=\nabla \times \mathbf {A} ^{_{\mathrm {G} }}}BI=×AI{\displaystyle \mathbf {B} ^{_{\mathrm {I} }}=\nabla \times \mathbf {A} ^{_{\mathrm {I} }}}

Electrical circuit

[edit]
Electrical circuit values in Gaussian system and ISQ
NameGaussian systemISQ
Charge conservationIG=dQGdt{\displaystyle I^{_{\mathrm {G} }}={\frac {\mathrm {d} Q^{_{\mathrm {G} }}}{\mathrm {d} t}}}II=dQIdt{\displaystyle I^{_{\mathrm {I} }}={\frac {\mathrm {d} Q^{_{\mathrm {I} }}}{\mathrm {d} t}}}
Lenz's lawVG=1cdΦGdt{\displaystyle V^{_{\mathrm {G} }}={\frac {1}{c}}{\frac {\mathrm {d} \mathrm {\Phi } ^{_{\mathrm {G} }}}{\mathrm {d} t}}}VI=dΦIdt{\displaystyle V^{_{\mathrm {I} }}=-{\frac {\mathrm {d} \mathrm {\Phi } ^{_{\mathrm {I} }}}{\mathrm {d} t}}}
Ohm's lawVG=RGIG{\displaystyle V^{_{\mathrm {G} }}=R^{_{\mathrm {G} }}I^{_{\mathrm {G} }}}VI=RIII{\displaystyle V^{_{\mathrm {I} }}=R^{_{\mathrm {I} }}I^{_{\mathrm {I} }}}
CapacitanceQG=CGVG{\displaystyle Q^{_{\mathrm {G} }}=C^{_{\mathrm {G} }}V^{_{\mathrm {G} }}}QI=CIVI{\displaystyle Q^{_{\mathrm {I} }}=C^{_{\mathrm {I} }}V^{_{\mathrm {I} }}}
InductanceΦG=cLGIG{\displaystyle \mathrm {\Phi } ^{_{\mathrm {G} }}=cL^{_{\mathrm {G} }}I^{_{\mathrm {G} }}}ΦI=LIII{\displaystyle \mathrm {\Phi } ^{_{\mathrm {I} }}=L^{_{\mathrm {I} }}I^{_{\mathrm {I} }}}

where

Fundamental constants

[edit]
Fundamental constants in Gaussian system and ISQ
NameGaussian systemISQ
Impedance of free spaceZ0G=4πc{\displaystyle Z_{0}^{_{\mathrm {G} }}={\frac {4\pi }{c}}}Z0I=μ0ε0{\displaystyle Z_{0}^{_{\mathrm {I} }}={\sqrt {\frac {\mu _{0}}{\varepsilon _{0}}}}}
Electric constant1=4πZ0Gc{\displaystyle 1={\frac {4\pi }{Z_{0}^{_{\mathrm {G} }}c}}}ε0=1Z0Ic{\displaystyle \varepsilon _{0}={\frac {1}{Z_{0}^{_{\mathrm {I} }}c}}}
Magnetic constant1=Z0Gc4π{\displaystyle 1={\frac {Z_{0}^{_{\mathrm {G} }}c}{4\pi }}}μ0=Z0Ic{\displaystyle \mu _{0}={\frac {Z_{0}^{_{\mathrm {I} }}}{c}}}
Fine-structure constantα=(eG)2c{\displaystyle \alpha ={\frac {(e^{_{\mathrm {G} }})^{2}}{\hbar c}}}α=14πε0(eI)2c{\displaystyle \alpha ={\frac {1}{4\pi \varepsilon _{0}}}{\frac {(e^{_{\mathrm {I} }})^{2}}{\hbar c}}}
Magnetic flux quantumϕ0G=hc2eG{\displaystyle \phi _{0}^{_{\mathrm {G} }}={\frac {hc}{2e^{_{\mathrm {G} }}}}}ϕ0I=h2eI{\displaystyle \phi _{0}^{_{\mathrm {I} }}={\frac {h}{2e^{_{\mathrm {I} }}}}}
Conductance quantumG0G=2(eG)2h{\displaystyle G_{0}^{_{\mathrm {G} }}={\frac {2(e^{_{\mathrm {G} }})^{2}}{h}}}G0I=2(eI)2h{\displaystyle G_{0}^{_{\mathrm {I} }}={\frac {2(e^{_{\mathrm {I} }})^{2}}{h}}}
Bohr radiusaB=2me(eG)2{\displaystyle a_{\mathrm {B} }={\frac {\hbar ^{2}}{m_{\mathrm {e} }(e^{_{\mathrm {G} }})^{2}}}}aB=4πε02me(eI)2{\displaystyle a_{\mathrm {B} }={\frac {4\pi \varepsilon _{0}\hbar ^{2}}{m_{\mathrm {e} }(e^{_{\mathrm {I} }})^{2}}}}
Bohr magnetonμBG=eG2mec{\displaystyle \mu _{\mathrm {B} }^{_{\mathrm {G} }}={\frac {e^{_{\mathrm {G} }}\hbar }{2m_{\mathrm {e} }c}}}μBI=eI2me{\displaystyle \mu _{\mathrm {B} }^{_{\mathrm {I} }}={\frac {e^{_{\mathrm {I} }}\hbar }{2m_{\mathrm {e} }}}}

Electromagnetic unit names

[edit]
For non-electromagnetic units, seeCentimetre–gram–second system of units.
Table 1: Common electromagnetism units in SI vs Gaussian[7]
QuantitySymbolSI unitGaussian unit
(in base units)
Conversion factor
Electric chargeqCFr
(cm3/2⋅g1/2⋅s−1)
qGqI=14πε02.998×109Fr1C{\displaystyle {\frac {q^{_{\mathrm {G} }}}{q^{_{\mathrm {I} }}}}={\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\approx {\frac {2.998\times 10^{9}\,\mathrm {Fr} }{1\,\mathrm {C} }}}
Electric currentIAstatA
(cm3/2⋅g1/2⋅s−2)
IGII=14πε02.998×109statA1A{\displaystyle {\frac {I^{_{\mathrm {G} }}}{I^{_{\mathrm {I} }}}}={\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\approx {\frac {2.998\times 10^{9}\,\mathrm {statA} }{1\,\mathrm {A} }}}
Electric potential,
Voltage
φ
V
VstatV
(cm1/2⋅g1/2⋅s−1)
VGVI=4πε01statV2.998×102V{\displaystyle {\frac {V^{_{\mathrm {G} }}}{V^{_{\mathrm {I} }}}}={\sqrt {4\pi \varepsilon _{0}}}\approx {\frac {1\,\mathrm {statV} }{2.998\times 10^{2}\,\mathrm {V} }}}
Electric fieldEV/mstatV/cm
(cm−1/2⋅g1/2⋅s−1)
EGEI=4πε01statV/cm2.998×104V/m{\displaystyle {\frac {\mathbf {E} ^{_{\mathrm {G} }}}{\mathbf {E} ^{_{\mathrm {I} }}}}={\sqrt {4\pi \varepsilon _{0}}}\approx {\frac {1\,\mathrm {statV/cm} }{2.998\times 10^{4}\,\mathrm {V/m} }}}
Electric displacement fieldDC/m2Fr/cm2
(cm−1/2g1/2s−1)
DGDI=4πε04π×2.998×105Fr/cm21C/m2{\displaystyle {\frac {\mathbf {D} ^{_{\mathrm {G} }}}{\mathbf {D} ^{_{\mathrm {I} }}}}={\sqrt {\frac {4\pi }{\varepsilon _{0}}}}\approx {\frac {4\pi \times 2.998\times 10^{5}\,\mathrm {Fr/cm} ^{2}}{1\,\mathrm {C/m} ^{2}}}}
Electric dipole momentpCmFrcm
(cm5/2⋅g1/2⋅s−1)
pGpI=14πε02.998×1011Frcm1Cm{\displaystyle {\frac {\mathbf {p} ^{_{\mathrm {G} }}}{\mathbf {p} ^{_{\mathrm {I} }}}}={\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\approx {\frac {2.998\times 10^{11}\,\mathrm {Fr} {\cdot }\mathrm {cm} }{1\,\mathrm {C} {\cdot }\mathrm {m} }}}
Electric flux[c]ΦDCFr
(cm3/2⋅g1/2⋅s−1)
ΦeGΦeI=4πε04π×2.998×109Fr1C{\displaystyle {\frac {\Phi _{\mathrm {e} }^{_{\mathrm {G} }}}{\Phi _{\mathrm {e} }^{_{\mathrm {I} }}}}={\sqrt {\frac {4\pi }{\varepsilon _{0}}}}\approx {\frac {4\pi \times 2.998\times 10^{9}\,\mathrm {Fr} }{1\,\mathrm {C} }}}
PermittivityεF/mcm/cmεGεI=1ε04π×2.9982×109cm/cm1F/m{\displaystyle {\frac {\varepsilon ^{_{\mathrm {G} }}}{\varepsilon ^{_{\mathrm {I} }}}}={\frac {1}{\varepsilon _{0}}}\approx {\frac {4\pi \times 2.998^{2}\times 10^{9}\,\mathrm {cm/cm} }{1\,\mathrm {F/m} }}}
MagneticB fieldBTG
(cm−1/2⋅g1/2⋅s−1)
BGBI=4πμ0104G1T{\displaystyle {\frac {\mathbf {B} ^{_{\mathrm {G} }}}{\mathbf {B} ^{_{\mathrm {I} }}}}={\sqrt {\frac {4\pi }{\mu _{0}}}}\approx {\frac {10^{4}\,\mathrm {G} }{1\,\mathrm {T} }}}
MagneticH fieldHA/mOe
(cm−1/2⋅g1/2⋅s−1)
HGHI=4πμ04π×103Oe1A/m{\displaystyle {\frac {\mathbf {H} ^{_{\mathrm {G} }}}{\mathbf {H} ^{_{\mathrm {I} }}}}={\sqrt {4\pi \mu _{0}}}\approx {\frac {4\pi \times 10^{-3}\,\mathrm {Oe} }{1\,\mathrm {A/m} }}}
Magnetic dipole momentmAm2erg/G
(cm5/2⋅g1/2⋅s−1)
mGmI=μ04π103erg/G1Am2{\displaystyle {\frac {\mathbf {m} ^{_{\mathrm {G} }}}{\mathbf {m} ^{_{\mathrm {I} }}}}={\sqrt {\frac {\mu _{0}}{4\pi }}}\approx {\frac {10^{3}\,\mathrm {erg/G} }{1\,\mathrm {A} {\cdot }\mathrm {m} ^{2}}}}
Magnetic fluxΦmWbMx
(cm3/2⋅g1/2⋅s−1)
ΦmGΦmI=4πμ0108Mx1Wb{\displaystyle {\frac {\Phi _{\mathrm {m} }^{_{\mathrm {G} }}}{\Phi _{\mathrm {m} }^{_{\mathrm {I} }}}}={\sqrt {\frac {4\pi }{\mu _{0}}}}\approx {\frac {10^{8}\,\mathrm {Mx} }{1\,\mathrm {Wb} }}}
PermeabilityμH/mcm/cmμGμI=1μ01cm/cm4π×107H/m{\displaystyle {\frac {\mu ^{_{\mathrm {G} }}}{\mu ^{_{\mathrm {I} }}}}={\frac {1}{\mu _{0}}}\approx {\frac {1\,\mathrm {cm/cm} }{4\pi \times 10^{-7}\,\mathrm {H/m} }}}
Magnetomotive forceF{\displaystyle {\mathcal {F}}}AGi
(cm1/2⋅g1/2⋅s−1)
FGFI=4πμ04π×101Gi1A{\displaystyle {\frac {{\mathcal {F}}^{_{\mathrm {G} }}}{{\mathcal {F}}^{_{\mathrm {I} }}}}={\sqrt {4\pi \mu _{0}}}\approx {\frac {4\pi \times 10^{-1}\,\mathrm {Gi} }{1\,\mathrm {A} }}}
Magnetic reluctanceR{\displaystyle {\mathcal {R}}}H−1Gi/Mx
(cm−1)
RGRI=μ04π×109Gi/Mx1H1{\displaystyle {\frac {{\mathcal {R}}^{_{\mathrm {G} }}}{{\mathcal {R}}^{_{\mathrm {I} }}}}=\mu _{0}\approx {\frac {4\pi \times 10^{-9}\,\mathrm {Gi/Mx} }{1\,\mathrm {H} ^{-1}}}}
ResistanceRΩs/cmRGRI=4πε01s/cm2.9982×1011Ω{\displaystyle {\frac {R^{_{\mathrm {G} }}}{R^{_{\mathrm {I} }}}}=4\pi \varepsilon _{0}\approx {\frac {1\,\mathrm {s/cm} }{2.998^{2}\times 10^{11}\,\Omega }}}
ResistivityρΩmsρGρI=4πε01s2.9982×109Ωm{\displaystyle {\frac {\rho ^{_{\mathrm {G} }}}{\rho ^{_{\mathrm {I} }}}}=4\pi \varepsilon _{0}\approx {\frac {1\,\mathrm {s} }{2.998^{2}\times 10^{9}\,\Omega {\cdot }\mathrm {m} }}}
CapacitanceCFcmCGCI=14πε02.9982×1011cm1F{\displaystyle {\frac {C^{_{\mathrm {G} }}}{C^{_{\mathrm {I} }}}}={\frac {1}{4\pi \varepsilon _{0}}}\approx {\frac {2.998^{2}\times 10^{11}\,\mathrm {cm} }{1\,\mathrm {F} }}}
InductanceLHs2/cmLGLI=4πε01s2/cm2.9982×1011H{\displaystyle {\frac {L^{_{\mathrm {G} }}}{L^{_{\mathrm {I} }}}}=4\pi \varepsilon _{0}\approx {\frac {1\,\mathrm {s} ^{2}/\mathrm {cm} }{2.998^{2}\times 10^{11}\,\mathrm {H} }}}

Note: The SI quantitiesε0{\displaystyle \varepsilon _{0}} andμ0{\displaystyle \mu _{0}} satisfyε0μ0=1/c2{\displaystyle \varepsilon _{0}\mu _{0}=1/c^{2}}.

The conversion factors are written both symbolically and numerically. The numerical conversion factors can be derived from the symbolic conversion factors bydimensional analysis. For example, the top row says1/4πε02.998×109Fr/1C{\displaystyle {1}\,/\,{\sqrt {4\pi \varepsilon _{0}}}\approx {2.998\times 10^{9}\,\mathrm {Fr} }\,/\,{1\,\mathrm {C} }}, a relation which can be verified with dimensional analysis, by expandingε0{\displaystyle \varepsilon _{0}} andcoulombs (C) inSI base units, and expandingstatcoulombs (or franklins, Fr) in Gaussian base units.

It is surprising to think of measuring capacitance in centimetres. One useful example is that a centimetre of capacitance is the capacitance between a sphere of radius 1 cm in vacuum and infinity.

Another surprising unit is measuringresistivity in units of seconds. A physical example is: Take aparallel-plate capacitor, which has a "leaky" dielectric with permittivity 1 but a finite resistivity. After charging it up, the capacitor will discharge itself over time, due to current leaking through the dielectric. If the resistivity of the dielectric ist seconds, the half-life of the discharge is~0.05t seconds. This result is independent of the size, shape, and charge of the capacitor, and therefore this example illuminates the fundamental connection between resistivity and time units.

Dimensionally equivalent units

[edit]

A number of the units defined by the table have different names but are in fact dimensionally equivalent – i.e., they have the same expression in terms of the base units cm, g, s. (This is analogous to the distinction in SI betweennewton-metre andjoule.) The different names help avoid ambiguities and misunderstandings as to what physical quantity is being measured. In particular,all of the following quantities are dimensionally equivalent in Gaussian units, but they are nevertheless given different unit names as follows:[8]

Dimensionally equivalent units
QuantityGaussian symbolIn Gaussian
base units
Gaussian unit
of measure
Electric fieldEGcm−1/2⋅g1/2⋅s−1statV/cm
Electric displacement fieldDGcm−1/2⋅g1/2⋅s−1statC/cm2
Polarization densityPGcm−1/2⋅g1/2⋅s−1statC/cm2
Magnetic flux densityBGcm−1/2⋅g1/2⋅s−1G
Magnetizing fieldHGcm−1/2⋅g1/2⋅s−1Oe
MagnetizationMGcm−1/2⋅g1/2⋅s−1dyn/Mx

General rules to translate a formula

[edit]

Any formula can be converted between Gaussian and SI units by using the symbolic conversion factors from Table 1 above.

For example, theelectric field of a stationary point charge has the ISQ formulaEI=qI4πε0r2r^,{\displaystyle \mathbf {E} ^{_{\mathrm {I} }}={\frac {q^{_{\mathrm {I} }}}{4\pi \varepsilon _{0}r^{2}}}{\hat {\mathbf {r} }},}wherer is distance, and the "I" superscript indicates that the electric field and charge are defined as in the ISQ. If we want the formula to instead use the Gaussian definitions of electric field and charge, we look up how these are related using Table 1, which says:EGEI=4πε0,qGqI=14πε0.{\displaystyle {\begin{aligned}{\frac {\mathbf {E} ^{_{\mathrm {G} }}}{\mathbf {E} ^{_{\mathrm {I} }}}}&={\sqrt {4\pi \varepsilon _{0}}}\,,\\{\frac {q^{_{\mathrm {G} }}}{q^{_{\mathrm {I} }}}}&={\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\,.\end{aligned}}}

Therefore, after substituting and simplifying, we get the Gaussian-system formula:EG=qGr2r^,{\displaystyle \mathbf {E} ^{_{\mathrm {G} }}={\frac {q^{_{\mathrm {G} }}}{r^{2}}}{\hat {\mathbf {r} }}\,,}which is the correct Gaussian-system formula, as mentioned in a previous section.

For convenience, the table below has a compilation of the symbolic conversion factors from Table 1. To convert any formula from the Gaussian system to the ISQ using this table, replace each symbol in the Gaussian column by the corresponding expression in the SI column (vice versa to convert the other way). Replace1/c2{\displaystyle 1/c^{2}} byε0μ0{\displaystyle \varepsilon _{0}\mu _{0}} (or vice versa). This will reproduce any of the specific formulas given in the list above, such as Maxwell's equations, as well as any other formula not listed.[9][10][11][d]

Table 2A: Replacement rules for translating formulas from Gaussian to ISQ
NameGaussian systemISQ
electric field,electric potential,electromotive force(EG,φG,EG){\displaystyle \left(\mathbf {E} ^{_{\mathrm {G} }},\varphi ^{_{\mathrm {G} }},{\mathcal {E}}^{_{\mathrm {G} }}\right)}4πε0(EI,φI,EI){\displaystyle {\sqrt {4\pi \varepsilon _{0}}}\left(\mathbf {E} ^{_{\mathrm {I} }},\varphi ^{_{\mathrm {I} }},{\mathcal {E}}^{_{\mathrm {I} }}\right)}
electric displacement fieldDG{\displaystyle \mathbf {D} ^{_{\mathrm {G} }}}4πε0DI{\displaystyle {\sqrt {\frac {4\pi }{\varepsilon _{0}}}}\mathbf {D} ^{_{\mathrm {I} }}}
charge,charge density,current,
current density,polarization density,
electric dipole moment
(qG,ρG,IG,JG,PG,pG){\displaystyle \left(q^{_{\mathrm {G} }},\rho ^{_{\mathrm {G} }},I^{_{\mathrm {G} }},\mathbf {J} ^{_{\mathrm {G} }},\mathbf {P} ^{_{\mathrm {G} }},\mathbf {p} ^{_{\mathrm {G} }}\right)}14πε0(qI,ρI,II,JI,PI,pI){\displaystyle {\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\left(q^{_{\mathrm {I} }},\rho ^{_{\mathrm {I} }},I^{_{\mathrm {I} }},\mathbf {J} ^{_{\mathrm {I} }},\mathbf {P} ^{_{\mathrm {I} }},\mathbf {p} ^{_{\mathrm {I} }}\right)}
magneticB field,magnetic flux,
magnetic vector potential
(BG,ΦmG,AG){\displaystyle \left(\mathbf {B} ^{_{\mathrm {G} }},\Phi _{\mathrm {m} }^{_{\mathrm {G} }},\mathbf {A} ^{_{\mathrm {G} }}\right)}4πμ0(BI,ΦmI,AI){\displaystyle {\sqrt {\frac {4\pi }{\mu _{0}}}}\left(\mathbf {B} ^{_{\mathrm {I} }},\Phi _{\mathrm {m} }^{_{\mathrm {I} }},\mathbf {A} ^{_{\mathrm {I} }}\right)}
magneticH field,magnetic scalar potential,magnetomotive force(HG,ψG,FG){\displaystyle \left(\mathbf {H} ^{_{\mathrm {G} }},\psi ^{_{\mathrm {G} }},{\mathcal {F}}^{_{\mathrm {G} }}\right)}4πμ0(HI,ψI,FI){\displaystyle {\sqrt {4\pi \mu _{0}}}\left(\mathbf {H} ^{_{\mathrm {I} }},\psi ^{_{\mathrm {I} }},{\mathcal {F}}^{_{\mathrm {I} }}\right)}
magnetic moment,magnetization,magnetic pole strength(mG,MG,pG){\displaystyle \left(\mathbf {m} ^{_{\mathrm {G} }},\mathbf {M} ^{_{\mathrm {G} }},p^{_{\mathrm {G} }}\right)}μ04π(mI,MI,pI){\displaystyle {\sqrt {\frac {\mu _{0}}{4\pi }}}\left(\mathbf {m} ^{_{\mathrm {I} }},\mathbf {M} ^{_{\mathrm {I} }},p^{_{\mathrm {I} }}\right)}
permittivity,
permeability
(εG,μG){\displaystyle \left(\varepsilon ^{_{\mathrm {G} }},\mu ^{_{\mathrm {G} }}\right)}(εIε0,μIμ0){\displaystyle \left({\frac {\varepsilon ^{_{\mathrm {I} }}}{\varepsilon _{0}}},{\frac {\mu ^{_{\mathrm {I} }}}{\mu _{0}}}\right)}
electric susceptibility,
magnetic susceptibility
(χeG,χmG){\displaystyle \left(\chi _{\mathrm {e} }^{_{\mathrm {G} }},\chi _{\mathrm {m} }^{_{\mathrm {G} }}\right)}14π(χeI,χmI){\displaystyle {\frac {1}{4\pi }}\left(\chi _{\mathrm {e} }^{_{\mathrm {I} }},\chi _{\mathrm {m} }^{_{\mathrm {I} }}\right)}
conductivity,conductance,capacitance(σG,SG,CG){\displaystyle \left(\sigma ^{_{\mathrm {G} }},S^{_{\mathrm {G} }},C^{_{\mathrm {G} }}\right)}14πε0(σI,SI,CI){\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}\left(\sigma ^{_{\mathrm {I} }},S^{_{\mathrm {I} }},C^{_{\mathrm {I} }}\right)}
resistivity,resistance,inductance,memristance,impedance(ρG,RG,LG,MG,ZG){\displaystyle \left(\rho ^{_{\mathrm {G} }},R^{_{\mathrm {G} }},L^{_{\mathrm {G} }},M^{_{\mathrm {G} }},Z^{_{\mathrm {G} }}\right)}4πε0(ρI,RI,LI,MI,ZI){\displaystyle 4\pi \varepsilon _{0}\left(\rho ^{_{\mathrm {I} }},R^{_{\mathrm {I} }},L^{_{\mathrm {I} }},M^{_{\mathrm {I} }},Z^{_{\mathrm {I} }}\right)}
magnetic reluctanceRG{\displaystyle {\mathcal {R}}^{_{\mathrm {G} }}}μ0RI{\displaystyle \mu _{0}{\mathcal {R}}^{_{\mathrm {I} }}}
Table 2B: Replacement rules for translating formulas from ISQ to Gaussian
NameISQGaussian system
electric field,electric potential,electromotive force(EI,φI,EI){\displaystyle \left(\mathbf {E} ^{_{\mathrm {I} }},\varphi ^{_{\mathrm {I} }},{\mathcal {E}}^{_{\mathrm {I} }}\right)}14πε0(EG,φG,EG){\displaystyle {\frac {1}{\sqrt {4\pi \varepsilon _{0}}}}\left(\mathbf {E} ^{_{\mathrm {G} }},\varphi ^{_{\mathrm {G} }},{\mathcal {E}}^{_{\mathrm {G} }}\right)}
electric displacement fieldDI{\displaystyle \mathbf {D} ^{_{\mathrm {I} }}}ε04πDG{\displaystyle {\sqrt {\frac {\varepsilon _{0}}{4\pi }}}\mathbf {D} ^{_{\mathrm {G} }}}
charge,charge density,current,
current density,polarization density,
electric dipole moment
(qI,ρI,II,JI,PI,pI){\displaystyle \left(q^{_{\mathrm {I} }},\rho ^{_{\mathrm {I} }},I^{_{\mathrm {I} }},\mathbf {J} ^{_{\mathrm {I} }},\mathbf {P} ^{_{\mathrm {I} }},\mathbf {p} ^{_{\mathrm {I} }}\right)}4πε0(qG,ρG,IG,JG,PG,pG){\displaystyle {\sqrt {4\pi \varepsilon _{0}}}\left(q^{_{\mathrm {G} }},\rho ^{_{\mathrm {G} }},I^{_{\mathrm {G} }},\mathbf {J} ^{_{\mathrm {G} }},\mathbf {P} ^{_{\mathrm {G} }},\mathbf {p} ^{_{\mathrm {G} }}\right)}
magneticB field,magnetic flux,
magnetic vector potential
(BI,ΦmI,AI){\displaystyle \left(\mathbf {B} ^{_{\mathrm {I} }},\Phi _{\mathrm {m} }^{_{\mathrm {I} }},\mathbf {A} ^{_{\mathrm {I} }}\right)}μ04π(BG,ΦmG,AG){\displaystyle {\sqrt {\frac {\mu _{0}}{4\pi }}}\left(\mathbf {B} ^{_{\mathrm {G} }},\Phi _{\mathrm {m} }^{_{\mathrm {G} }},\mathbf {A} ^{_{\mathrm {G} }}\right)}
magneticH field,magnetic scalar potential,magnetomotive force(HI,ψI,FI){\displaystyle \left(\mathbf {H} ^{_{\mathrm {I} }},\psi ^{_{\mathrm {I} }},{\mathcal {F}}^{_{\mathrm {I} }}\right)}14πμ0(HG,ψG,FG){\displaystyle {\frac {1}{\sqrt {4\pi \mu _{0}}}}\left(\mathbf {H} ^{_{\mathrm {G} }},\psi ^{_{\mathrm {G} }},{\mathcal {F}}^{_{\mathrm {G} }}\right)}
magnetic moment,magnetization,magnetic pole strength(mI,MI,pI){\displaystyle \left(\mathbf {m} ^{_{\mathrm {I} }},\mathbf {M} ^{_{\mathrm {I} }},p^{_{\mathrm {I} }}\right)}4πμ0(mG,MG,pG){\displaystyle {\sqrt {\frac {4\pi }{\mu _{0}}}}\left(\mathbf {m} ^{_{\mathrm {G} }},\mathbf {M} ^{_{\mathrm {G} }},p^{_{\mathrm {G} }}\right)}
permittivity,
permeability
(εI,μI){\displaystyle \left(\varepsilon ^{_{\mathrm {I} }},\mu ^{_{\mathrm {I} }}\right)}(ε0εG,μ0μG){\displaystyle \left(\varepsilon _{0}\varepsilon ^{_{\mathrm {G} }},\mu _{0}\mu ^{_{\mathrm {G} }}\right)}
electric susceptibility,
magnetic susceptibility
(χeI,χmI){\displaystyle \left(\chi _{\mathrm {e} }^{_{\mathrm {I} }},\chi _{\mathrm {m} }^{_{\mathrm {I} }}\right)}4π(χeG,χmG){\displaystyle 4\pi \left(\chi _{\mathrm {e} }^{_{\mathrm {G} }},\chi _{\mathrm {m} }^{_{\mathrm {G} }}\right)}
conductivity,conductance,capacitance(σI,SI,CI){\displaystyle \left(\sigma ^{_{\mathrm {I} }},S^{_{\mathrm {I} }},C^{_{\mathrm {I} }}\right)}4πε0(σG,SG,CG){\displaystyle 4\pi \varepsilon _{0}\left(\sigma ^{_{\mathrm {G} }},S^{_{\mathrm {G} }},C^{_{\mathrm {G} }}\right)}
resistivity,resistance,inductance,memristance,impedance(ρI,RI,LI,MI,ZI){\displaystyle \left(\rho ^{_{\mathrm {I} }},R^{_{\mathrm {I} }},L^{_{\mathrm {I} }},M^{_{\mathrm {I} }},Z^{_{\mathrm {I} }}\right)}14πε0(ρG,RG,LG,MG,ZG){\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}\left(\rho ^{_{\mathrm {G} }},R^{_{\mathrm {G} }},L^{_{\mathrm {G} }},M^{_{\mathrm {G} }},Z^{_{\mathrm {G} }}\right)}
magnetic reluctanceRI{\displaystyle {\mathcal {R}}^{_{\mathrm {I} }}}1μ0RG{\displaystyle {\frac {1}{\mu _{0}}}{\mathcal {R}}^{_{\mathrm {G} }}}

After the rules of the table have been applied and the resulting formula has been simplified, replace all combinationsε0μ0{\displaystyle \varepsilon _{0}\mu _{0}} by1/c2{\displaystyle 1/c^{2}}.

Notes

[edit]
  1. ^One of many examples of using the term "cgs units" to refer to Gaussian units is:Lecture notes from Stanford University
  2. ^abFor example, one widely used graduate electromagnetism textbook isClassical Electrodynamics byJ. D. Jackson. The second edition, published in 1975, used Gaussian units exclusively, but the third edition, published in 1998, uses mostly SI units. Similarly,Electricity and Magnetism by Edward Purcell is a popular undergraduate textbook. The second edition, published in 1984, used Gaussian units, while the third edition, published in 2013, switched to SI units.
  3. ^The quantity here is the flux of thedisplacement field (D), not the electric field (E).
  4. ^For some examples of how to use this table, see:Units in Electricity and Magnetism. See the section "Conversion of Gaussian formulae into SI" and the subsequent text.

References

[edit]
  1. ^abc"CGS", inHow Many? A Dictionary of Units of Measurement, by Russ Rowlett and theUniversity of North Carolina at Chapel Hill
  2. ^International Bureau of Weights and Measures (2006),The International System of Units (SI)(PDF) (8th ed.),ISBN 92-822-2213-6,archived(PDF) from the original on 2021-06-04, retrieved2021-12-16, p. 128
  3. ^abcLittlejohn, Robert (Fall 2017)."Gaussian, SI and Other Systems of Units in Electromagnetic Theory"(PDF).Physics 221A, University of California, Berkeley lecture notes. Retrieved2018-04-18.
  4. ^Kowalski, Ludwik, 1986,"A Short History of the SI Units in Electricity",Archived 2009-04-29 at theWayback MachineThe Physics Teacher 24(2): 97–99.Alternate web link (subscription required)
  5. ^A. Garg, 2012, "Classical Electrodynamics in a Nutshell" (Princeton University Press).
  6. ^Introduction to Electrodynamics by Capri and Panat, p180
  7. ^Cardarelli, F. (2004).Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins (2nd ed.). Springer. pp. 20–25.ISBN 978-1-85233-682-0.
  8. ^Cohen, Douglas L. (2001).Demystifying Electromagnetic Equations. SPIE Press. p. 155.ISBN 9780819442345. Retrieved2012-12-25.
  9. ^Бредов, М. М.; Румянцев, В. В.; Топтыгин, И. Н. (1985). "Appendix 5: Units transform".Классическая электродинамика [Classical Electrodynamics] (in Russian).Nauka. p. 385.
  10. ^Simpson, David."SI / Gaussian Formula Conversion Table"(PDF).Prince George's Community College. Retrieved23 February 2024.
  11. ^Jackson, John (14 August 1998).Classical Electrodynamics (3 ed.). John Wiley & Sons, Inc. p. 782.ISBN 0-471-30932-X.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gaussian_units&oldid=1323281515"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp