Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gaussian integral

From Wikipedia, the free encyclopedia

Integral of the Gaussian function, equal to sqrt(π)
This integral from statistics and physics is not to be confused withGaussian quadrature, a method of numerical integration.
A graph of the functionf(x)=ex2{\displaystyle f(x)=e^{-x^{2}}} and the area between it and thex{\displaystyle x}-axis, (i.e. the entire real line) which is equal toπ{\displaystyle {\sqrt {\pi }}}.

TheGaussian integral, also known as theEuler–Poisson integral, is theintegral of theGaussian functionf(x)=ex2{\displaystyle f(x)=e^{-x^{2}}} over the entire real line. Named after the German mathematicianCarl Friedrich Gauss, the integral isex2dx=π.{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.}

Abraham de Moivre originally discovered this type of integral in 1733, while Gauss published the precise integral in 1809,[1] attributing its discovery toLaplace. The integral has a wide range of applications. For example, with a slight change of variables it is used to compute thenormalizing constant of thenormal distribution. The same integral with finite limits is closely related to both theerror function and thecumulative distribution function of thenormal distribution. In physics this type of integral appears frequently, for example, inquantum mechanics, to find the probability density of the ground state of the harmonic oscillator. This integral is also used in the path integral formulation, to find the propagator of the harmonic oscillator, and instatistical mechanics, to find itspartition function.

Although noelementary function exists for the error function, as can be proven by theRisch algorithm,[2] the Gaussian integral can be solvedanalytically through the methods ofmultivariable calculus. That is, there is no elementaryindefinite integral forex2dx,{\displaystyle \int e^{-x^{2}}\,dx,}but thedefinite integralex2dx{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx}can be evaluated. The definite integral of an arbitraryGaussian function isea(x+b)2dx=πa.{\displaystyle \int _{-\infty }^{\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}}.}

Computation

[edit]

By polar coordinates

[edit]

A standard way to compute the Gaussian integral, the idea of which goes back to Poisson,[3] is to make use of the property that:

(ex2dx)2=ex2dxey2dy=e(x2+y2)dxdy.{\displaystyle \left(\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\right)^{2}=\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\int _{-\infty }^{\infty }e^{-y^{2}}\,dy=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{-\left(x^{2}+y^{2}\right)}\,dx\,dy.}

Consider the functione(x2+y2)=er2{\displaystyle e^{-\left(x^{2}+y^{2}\right)}=e^{-r^{2}}}on the planeR2{\displaystyle \mathbb {R} ^{2}}, and compute its integral two ways:

  1. on the one hand, bydouble integration in theCartesian coordinate system, its integral is a square:(ex2dx)2;{\displaystyle \left(\int e^{-x^{2}}\,dx\right)^{2};}
  2. on the other hand, byshell integration (a case of double integration inpolar coordinates), its integral is computed to beπ{\displaystyle \pi }

Comparing these two computations yields the integral, though one should take care about theimproper integrals involved.

R2e(x2+y2)dxdy=02π0er2rdrdθ=2π0rer2dr=2π012esdss=r2=π0esds=π[es]0=π(e0e)=π(10)=π,{\displaystyle {\begin{aligned}\iint _{\mathbb {R} ^{2}}e^{-\left(x^{2}+y^{2}\right)}dx\,dy&=\int _{0}^{2\pi }\int _{0}^{\infty }e^{-r^{2}}r\,dr\,d\theta \\[6pt]&=2\pi \int _{0}^{\infty }re^{-r^{2}}\,dr\\[6pt]&=2\pi \int _{-\infty }^{0}{\tfrac {1}{2}}e^{s}\,ds&&s=-r^{2}\\[6pt]&=\pi \int _{-\infty }^{0}e^{s}\,ds\\[6pt]&=\pi \,\left[e^{s}\right]_{-\infty }^{0}\\[6pt]&=\pi \,\left(e^{0}-e^{-\infty }\right)\\[6pt]&=\pi \,\left(1-0\right)\\[6pt]&=\pi ,\end{aligned}}}where the factor ofr is theJacobian determinant which appears because of thetransform to polar coordinates (rdr is the standard measure on the plane, expressed in polar coordinatesWikibooks:Calculus/Polar Integration#Generalization), and the substitution involves takings = −r2, sods = −2rdr.

Combining these yields(ex2dx)2=π,{\displaystyle \left(\int _{-\infty }^{\infty }e^{-x^{2}}\,dx\right)^{2}=\pi ,}soex2dx=π.{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.}

Complete proof

[edit]

To justify the improper double integrals and equating the two expressions, we begin with an approximating function:I(a)=aaex2dx.{\displaystyle I(a)=\int _{-a}^{a}e^{-x^{2}}dx.}

If the integralex2dx{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx}wereabsolutely convergent we would have that itsCauchy principal value, that is, the limitlimaI(a){\displaystyle \lim _{a\to \infty }I(a)}would coincide withex2dx.{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx.}To see that this is the case, consider that

|ex2|dx<1xex2dx+11ex2dx+1xex2dx<.{\displaystyle \int _{-\infty }^{\infty }\left|e^{-x^{2}}\right|dx<\int _{-\infty }^{-1}-xe^{-x^{2}}\,dx+\int _{-1}^{1}e^{-x^{2}}\,dx+\int _{1}^{\infty }xe^{-x^{2}}\,dx<\infty .}

So we can computeex2dx{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx}by just taking the limitlimaI(a).{\displaystyle \lim _{a\to \infty }I(a).}

Taking the square ofI(a){\displaystyle I(a)} yields

I(a)2=(aaex2dx)(aaey2dy)=aa(aaey2dy)ex2dx=aaaae(x2+y2)dydx.{\displaystyle {\begin{aligned}I(a)^{2}&=\left(\int _{-a}^{a}e^{-x^{2}}\,dx\right)\left(\int _{-a}^{a}e^{-y^{2}}\,dy\right)\\[6pt]&=\int _{-a}^{a}\left(\int _{-a}^{a}e^{-y^{2}}\,dy\right)\,e^{-x^{2}}\,dx\\[6pt]&=\int _{-a}^{a}\int _{-a}^{a}e^{-\left(x^{2}+y^{2}\right)}\,dy\,dx.\end{aligned}}}

UsingFubini's theorem, the above double integral can be seen as an area integral[a,a]×[a,a]e(x2+y2)d(x,y),{\displaystyle \iint _{[-a,a]\times [-a,a]}e^{-\left(x^{2}+y^{2}\right)}\,d(x,y),}taken over a square with vertices{(−a,a), (a,a), (a, −a), (−a, −a)} on thexy-plane.

Since the exponential function is greater than 0 for all real numbers, it then follows that the integral taken over the square'sincircle must be less thanI(a)2{\displaystyle I(a)^{2}}, and similarly the integral taken over the square'scircumcircle must be greater thanI(a)2{\displaystyle I(a)^{2}}. The integrals over the two disks can easily be computed by switching from Cartesian coordinates topolar coordinates:

x=rcosθ,y=rsinθ{\displaystyle {\begin{aligned}x&=r\cos \theta ,&y&=r\sin \theta \end{aligned}}}J(r,θ)=[xrxθyryθ]=[cosθrsinθsinθrcosθ]{\displaystyle \mathbf {J} (r,\theta )={\begin{bmatrix}{\dfrac {\partial x}{\partial r}}&{\dfrac {\partial x}{\partial \theta }}\\[1em]{\dfrac {\partial y}{\partial r}}&{\dfrac {\partial y}{\partial \theta }}\end{bmatrix}}={\begin{bmatrix}\cos \theta &-r\sin \theta \\\sin \theta &{\hphantom {-}}r\cos \theta \end{bmatrix}}}d(x,y)=|J(r,θ)|d(r,θ)=rd(r,θ).{\displaystyle d(x,y)=\left|J(r,\theta )\right|d(r,\theta )=r\,d(r,\theta ).}02π0arer2drdθ<I2(a)<02π0a2rer2drdθ.{\displaystyle \int _{0}^{2\pi }\int _{0}^{a}re^{-r^{2}}\,dr\,d\theta <I^{2}(a)<\int _{0}^{2\pi }\int _{0}^{a{\sqrt {2}}}re^{-r^{2}}\,dr\,d\theta .}

(Seeto polar coordinates from Cartesian coordinates for help with polar transformation.)

Integrating,π(1ea2)<I2(a)<π(1e2a2).{\displaystyle \pi \left(1-e^{-a^{2}}\right)<I^{2}(a)<\pi \left(1-e^{-2a^{2}}\right).}

By thesqueeze theorem, this gives the Gaussian integralex2dx=π.{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.}

By Cartesian coordinates

[edit]

A different technique, which goes back to Laplace (1812),[3] is the following. Lety=xsdy=xds.{\displaystyle {\begin{aligned}y&=xs\\dy&=x\,ds.\end{aligned}}}

Since the limits ons asy → ±∞ depend on the sign ofx, it simplifies the calculation to use the fact thatex2 is aneven function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity. That is,

ex2dx=20ex2dx.{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx=2\int _{0}^{\infty }e^{-x^{2}}\,dx.}

Thus, over the range of integration,x ≥ 0, and the variablesy ands have the same limits. This yields:I2=400e(x2+y2)dydx=40(0e(x2+y2)dy)dx=40(0ex2(1+s2)xds)dx{\displaystyle {\begin{aligned}I^{2}&=4\int _{0}^{\infty }\int _{0}^{\infty }e^{-\left(x^{2}+y^{2}\right)}dy\,dx\\[6pt]&=4\int _{0}^{\infty }\left(\int _{0}^{\infty }e^{-\left(x^{2}+y^{2}\right)}\,dy\right)\,dx\\[6pt]&=4\int _{0}^{\infty }\left(\int _{0}^{\infty }e^{-x^{2}\left(1+s^{2}\right)}x\,ds\right)\,dx\\[6pt]\end{aligned}}}Then, usingFubini's theorem to switch theorder of integration:I2=40(0ex2(1+s2)xdx)ds=40[ex2(1+s2)2(1+s2)]x=0x=ds=4(120ds1+s2)=2arctan(s)|0=π.{\displaystyle {\begin{aligned}I^{2}&=4\int _{0}^{\infty }\left(\int _{0}^{\infty }e^{-x^{2}\left(1+s^{2}\right)}x\,dx\right)\,ds\\[6pt]&=4\int _{0}^{\infty }\left[{\frac {e^{-x^{2}\left(1+s^{2}\right)}}{-2\left(1+s^{2}\right)}}\right]_{x=0}^{x=\infty }\,ds\\[6pt]&=4\left({\frac {1}{2}}\int _{0}^{\infty }{\frac {ds}{1+s^{2}}}\right)\\[6pt]&=2\arctan(s){\Big |}_{0}^{\infty }\\[6pt]&=\pi .\end{aligned}}}

Therefore,I=π{\displaystyle I={\sqrt {\pi }}}, as expected.

ByLaplace's method

[edit]

In Laplace approximation, we deal only with up to second-order terms inTaylor expansion, so we considerex21x2(1+x2)1{\displaystyle e^{-x^{2}}\approx 1-x^{2}\approx (1+x^{2})^{-1}}.

In fact, since(1+t)et1{\displaystyle (1+t)e^{-t}\leq 1} for allt{\displaystyle t}, we have the exact bounds:1x2ex2(1+x2)1{\displaystyle 1-x^{2}\leq e^{-x^{2}}\leq (1+x^{2})^{-1}}Then we can do the bound at Laplace approximation limit:[1,1](1x2)ndx[1,1]enx2dx[1,1](1+x2)ndx{\displaystyle \int _{[-1,1]}(1-x^{2})^{n}dx\leq \int _{[-1,1]}e^{-nx^{2}}dx\leq \int _{[-1,1]}(1+x^{2})^{-n}dx}

That is,2n[0,1](1x2)ndx[n,n]ex2dx2n[0,1](1+x2)ndx{\displaystyle 2{\sqrt {n}}\int _{[0,1]}(1-x^{2})^{n}dx\leq \int _{[-{\sqrt {n}},{\sqrt {n}}]}e^{-x^{2}}dx\leq 2{\sqrt {n}}\int _{[0,1]}(1+x^{2})^{-n}dx}

By trigonometric substitution, we exactly compute those two bounds:2n(2n)!!/(2n+1)!!{\displaystyle 2{\sqrt {n}}(2n)!!/(2n+1)!!} and2n(π/2)(2n3)!!/(2n2)!!{\displaystyle 2{\sqrt {n}}(\pi /2)(2n-3)!!/(2n-2)!!}

By taking the square root of theWallis formula,π2=n=1(2n)2(2n1)(2n+1){\displaystyle {\frac {\pi }{2}}=\prod _{n=1}{\frac {(2n)^{2}}{(2n-1)(2n+1)}}}we haveπ=2limnn(2n)!!(2n+1)!!{\displaystyle {\sqrt {\pi }}=2\lim _{n\to \infty }{\sqrt {n}}{\frac {(2n)!!}{(2n+1)!!}}}, the desired lower bound limit. Similarly we can get the desired upper bound limit.Conversely, if we first compute the integral with one of the other methods above, we would obtain a proof of the Wallis formula.

Proof by complex integral

[edit]

Several proofs have been discovered usingCauchy's integral formula, despite the integral being initially thought to be ill-suited to theresidue calculus.[3][4]

Relation to the gamma function

[edit]

The integrand is aneven function,

ex2dx=20ex2dx{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}dx=2\int _{0}^{\infty }e^{-x^{2}}dx}

Thus, after the change of variablex=t{\textstyle x={\sqrt {t}}}, this turns into the Euler integral

20ex2dx=2012 et t12dt=Γ(12)=π{\displaystyle 2\int _{0}^{\infty }e^{-x^{2}}dx=2\int _{0}^{\infty }{\frac {1}{2}}\ e^{-t}\ t^{-{\frac {1}{2}}}dt=\Gamma {\left({\frac {1}{2}}\right)}={\sqrt {\pi }}}

whereΓ(z)=0tz1etdt{\textstyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}dt} is thegamma function. More generally,0xneaxbdx=Γ((n+1)/b)ba(n+1)/b,{\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{b}}dx={\frac {\Gamma {\left((n+1)/b\right)}}{ba^{(n+1)/b}}},}which can be obtained by substitutingt=axb{\displaystyle t=ax^{b}} in the integrand of the gamma function to getΓ(z)=azb0xbz1eaxbdx{\textstyle \Gamma (z)=a^{z}b\int _{0}^{\infty }x^{bz-1}e^{-ax^{b}}dx}.

Generalizations

[edit]

The integral of a Gaussian function

[edit]
Main article:Integral of a Gaussian function

The integral of an arbitraryGaussian function isea(x+b)2dx=πa.{\displaystyle \int _{-\infty }^{\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}}.}

An alternative form ise(ax2bx+c)dx=πaeb24ac.{\displaystyle \int _{-\infty }^{\infty }e^{-(ax^{2}-bx+c)}\,dx={\sqrt {\frac {\pi }{a}}}\,e^{{\frac {b^{2}}{4a}}-c}.}

This form is useful for calculating expectations of some continuous probability distributions related to the normal distribution, such as thelog-normal distribution, for example.

Complex form

[edit]
Main article:Fresnel integral

e12it2dt=eiπ/42π{\displaystyle \int _{-\infty }^{\infty }e^{{\frac {1}{2}}it^{2}}dt=e^{i\pi /4}{\sqrt {2\pi }}}and more generally,RNe12ixTAxdx=det(A)12(eiπ/42π)N{\displaystyle \int _{\mathbb {R} ^{N}}e^{{\frac {1}{2}}i\mathbf {x} ^{T}A\mathbf {x} }dx=\det(A)^{-{\frac {1}{2}}}{\left(e^{i\pi /4}{\sqrt {2\pi }}\right)}^{N}}for any positive-definite symmetric matrixA{\displaystyle A}.

n-dimensional and functional generalization

[edit]
Main article:multivariate normal distribution

SupposeA is a symmetric positive-definite (hence invertible)n ×nprecision matrix, which is the matrix inverse of thecovariance matrix. Then,

Rnexp(12xTAx)dnx=Rnexp(12i,j=1nAijxixj)dnx=(2π)ndetA=1det(A/2π)=det(2πA1){\displaystyle {\begin{aligned}\int _{\mathbb {R} ^{n}}\exp {\left(-{\frac {1}{2}}\mathbf {x} ^{\mathsf {T}}A\mathbf {x} \right)}\,d^{n}\mathbf {x} &=\int _{\mathbb {R} ^{n}}\exp {\left(-{\frac {1}{2}}\sum \limits _{i,j=1}^{n}A_{ij}x_{i}x_{j}\right)}\,d^{n}\mathbf {x} \\[1ex]&={\sqrt {\frac {{\left(2\pi \right)}^{n}}{\det A}}}={\sqrt {\frac {1}{\det \left(A/2\pi \right)}}}\\[1ex]&={\sqrt {\det \left(2\pi A^{-1}\right)}}\end{aligned}}}

By completing the square, this generalizes toRnexp(12xTAx+bTx+c)dnx=det(2πA1)exp(12bTA1b+c){\displaystyle \int _{\mathbb {R} ^{n}}\exp {\left(-{\tfrac {1}{2}}\mathbf {x} ^{\mathsf {T}}A\mathbf {x} +\mathbf {b} ^{\mathsf {T}}\mathbf {x} +c\right)}\,d^{n}\mathbf {x} ={\sqrt {\det \left(2\pi A^{-1}\right)}}\exp \left({\tfrac {1}{2}}\mathbf {b} ^{\mathsf {T}}A^{-1}\mathbf {b} +c\right)}

This fact is applied in the study of themultivariate normal distribution.

Also,xk1xk2Nexp(12i,j=1nAijxixj)dnx=(2π)ndetA12NN!σS2N(A1)kσ(1)kσ(2)(A1)kσ(2N1)kσ(2N){\displaystyle \int x_{k_{1}}\cdots x_{k_{2N}}\,\exp {\left(-{\frac {1}{2}}\sum \limits _{i,j=1}^{n}A_{ij}x_{i}x_{j}\right)}\,d^{n}x={\sqrt {\frac {(2\pi )^{n}}{\det A}}}\,{\frac {1}{2^{N}N!}}\,\sum _{\sigma \in S_{2N}}(A^{-1})_{k_{\sigma (1)}k_{\sigma (2)}}\cdots (A^{-1})_{k_{\sigma (2N-1)}k_{\sigma (2N)}}}whereσ is apermutation of{1, …, 2N} and the extra factor on the right-hand side is the sum over all combinatorial pairings of{1, …, 2N} ofN copies ofA−1.

Alternatively,[5]

f(x)exp(12i,j=1nAijxixj)dnx=(2π)ndetAexp(12i,j=1n(A1)ijxixj)f(x)|x=0{\displaystyle \int f(\mathbf {x} )\exp {\left(-{\frac {1}{2}}\sum _{i,j=1}^{n}A_{ij}x_{i}x_{j}\right)}d^{n}\mathbf {x} ={\sqrt {\frac {{\left(2\pi \right)}^{n}}{\det A}}}\,\left.\exp \left({\frac {1}{2}}\sum _{i,j=1}^{n}\left(A^{-1}\right)_{ij}{\partial \over \partial x_{i}}{\partial \over \partial x_{j}}\right)f(\mathbf {x} )\right|_{\mathbf {x} =0}}

for someanalytic functionf, provided it satisfies some appropriate bounds on its growth and some other technical criteria. (It works for some functions and fails for others. Polynomials are fine.) The exponential over a differential operator is understood as apower series.

Whilefunctional integrals have no rigorous definition (or even a nonrigorous computational one in most cases), we candefine a Gaussian functional integral in analogy to the finite-dimensional case.[citation needed] There is still the problem, though, that(2π){\displaystyle (2\pi )^{\infty }} is infinite and also, thefunctional determinant would also be infinite in general. This can be taken care of if we only consider ratios:

f(x1)f(x2N)exp[12A(x2N+1,x2N+2)f(x2N+1)f(x2N+2)ddx2N+1ddx2N+2]Dfexp[12A(x2N+1,x2N+2)f(x2N+1)f(x2N+2)ddx2N+1ddx2N+2]Df=12NN!σS2NA1(xσ(1),xσ(2))A1(xσ(2N1),xσ(2N)).{\displaystyle {\begin{aligned}&{\frac {\displaystyle \int f(x_{1})\cdots f(x_{2N})\exp \left[{-\iint {\frac {1}{2}}A(x_{2N+1},x_{2N+2})f(x_{2N+1})f(x_{2N+2})\,d^{d}x_{2N+1}\,d^{d}x_{2N+2}}\right]{\mathcal {D}}f}{\displaystyle \int \exp \left[{-\iint {\frac {1}{2}}A(x_{2N+1},x_{2N+2})f(x_{2N+1})f(x_{2N+2})\,d^{d}x_{2N+1}\,d^{d}x_{2N+2}}\right]{\mathcal {D}}f}}\\[6pt]={}&{\frac {1}{2^{N}N!}}\sum _{\sigma \in S_{2N}}A^{-1}(x_{\sigma (1)},x_{\sigma (2)})\cdots A^{-1}(x_{\sigma (2N-1)},x_{\sigma (2N)}).\end{aligned}}}

In theDeWitt notation, the equation looks identical to the finite-dimensional case.

n-dimensional with linear term

[edit]

IfA is again a symmetric positive-definite matrix, then (assuming all are column vectors)exp(12i,j=1nAijxixj+i=1nbixi)dnx=exp(12xTAx+bTx)dnx=(2π)ndetAexp(12bTA1b).{\displaystyle {\begin{aligned}\int \exp \left(-{\frac {1}{2}}\sum _{i,j=1}^{n}A_{ij}x_{i}x_{j}+\sum _{i=1}^{n}b_{i}x_{i}\right)d^{n}\mathbf {x} &=\int \exp \left(-{\tfrac {1}{2}}\mathbf {x} ^{\mathsf {T}}A\mathbf {x} +\mathbf {b} ^{\mathsf {T}}\mathbf {x} \right)d^{n}\mathbf {x} \\&={\sqrt {\frac {(2\pi )^{n}}{\det A}}}\exp \left({\tfrac {1}{2}}\mathbf {b} ^{\mathsf {T}}A^{-1}\mathbf {b} \right).\end{aligned}}}

Integrals of similar form

[edit]

0x2nex2/a2dx=πa2n+1(2n1)!!2n+1{\displaystyle \int _{0}^{\infty }x^{2n}e^{-{x^{2}}/{a^{2}}}\,dx={\sqrt {\pi }}{\frac {a^{2n+1}(2n-1)!!}{2^{n+1}}}}0x2n+1ex2/a2dx=n!2a2n+2{\displaystyle \int _{0}^{\infty }x^{2n+1}e^{-{x^{2}}/{a^{2}}}\,dx={\frac {n!}{2}}a^{2n+2}}0x2nebx2dx=(2n1)!!bn2n+1πb{\displaystyle \int _{0}^{\infty }x^{2n}e^{-bx^{2}}\,dx={\frac {(2n-1)!!}{b^{n}2^{n+1}}}{\sqrt {\frac {\pi }{b}}}}0x2n+1ebx2dx=n!2bn+1{\displaystyle \int _{0}^{\infty }x^{2n+1}e^{-bx^{2}}\,dx={\frac {n!}{2b^{n+1}}}}0xnebx2dx=Γ(n+12)2bn+12{\displaystyle \int _{0}^{\infty }x^{n}e^{-bx^{2}}\,dx={\frac {\Gamma ({\frac {n+1}{2}})}{2b^{\frac {n+1}{2}}}}}wheren{\displaystyle n} is a positive integer

An easy way to derive these is bydifferentiating under the integral sign.

x2neαx2dx=(1)nnαneαx2dx=(1)nnαneαx2dx=π(1)nnαnα12=πα(2n1)!!(2α)n{\displaystyle {\begin{aligned}\int _{-\infty }^{\infty }x^{2n}e^{-\alpha x^{2}}\,dx&=\left(-1\right)^{n}\int _{-\infty }^{\infty }{\frac {\partial ^{n}}{\partial \alpha ^{n}}}e^{-\alpha x^{2}}\,dx\\[1ex]&=\left(-1\right)^{n}{\frac {\partial ^{n}}{\partial \alpha ^{n}}}\int _{-\infty }^{\infty }e^{-\alpha x^{2}}\,dx\\[1ex]&={\sqrt {\pi }}\left(-1\right)^{n}{\frac {\partial ^{n}}{\partial \alpha ^{n}}}\alpha ^{-{\frac {1}{2}}}\\[1ex]&={\sqrt {\frac {\pi }{\alpha }}}{\frac {(2n-1)!!}{\left(2\alpha \right)^{n}}}\end{aligned}}}

One could also integrate by parts and find arecurrence relation to solve this.

Higher-order polynomials

[edit]

Applying a linear change of basis shows that the integral of the exponential of a homogeneous polynomial inn variables may depend only onSL(n)-invariants of the polynomial. One such invariant is thediscriminant,zeros of which mark the singularities of the integral. However, the integral may also depend on other invariants.[6]

Exponentials of other even polynomials can numerically be solved using series. These may be interpreted asformal calculations when there is no convergence. For example, the solution to the integral of the exponential of a quartic polynomial is[citation needed]

eax4+bx3+cx2+dx+fdx=12efn,m,p=0n+p=0mod2bnn!cmm!dpp!Γ(3n+2m+p+14)(a)3n+2m+p+14.{\displaystyle \int _{-\infty }^{\infty }e^{ax^{4}+bx^{3}+cx^{2}+dx+f}\,dx={\frac {1}{2}}e^{f}\sum _{\begin{smallmatrix}n,m,p=0\\n+p=0{\bmod {2}}\end{smallmatrix}}^{\infty }{\frac {b^{n}}{n!}}{\frac {c^{m}}{m!}}{\frac {d^{p}}{p!}}{\frac {\Gamma {\left({\frac {3n+2m+p+1}{4}}\right)}}{{\left(-a\right)}^{\frac {3n+2m+p+1}{4}}}}.}

Then +p = 0 mod 2 requirement is because the integral from −∞ to 0 contributes a factor of(−1)n+p/2 to each term, while the integral from 0 to +∞ contributes a factor of 1/2 to each term. These integrals turn up in subjects such asquantum field theory.

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^Stahl, Saul (April 2006)."The Evolution of the Normal Distribution"(PDF).MAA.org. Archived fromthe original(PDF) on January 25, 2016. RetrievedMay 25, 2018.
  2. ^Cherry, G. W. (1985)."Integration in Finite Terms with Special Functions: the Error Function".Journal of Symbolic Computation.1 (3):283–302.doi:10.1016/S0747-7171(85)80037-7.
  3. ^abcLee, Peter M."The Probability Integral"(PDF).
  4. ^Remmert, Reinhold (1998).Theory of Complex Functions (2nd English ed.). New York: Springer-Verlag. p. 414.ISBN 0-387-97195-5.
  5. ^"Reference for Multidimensional Gaussian Integral".Stack Exchange. March 30, 2012.
  6. ^Morozov, A.; Shakirove, Sh. (2009). "Introduction to integral discriminants".Journal of High Energy Physics.2009 (12): 002.arXiv:0903.2595.Bibcode:2009JHEP...12..002M.doi:10.1088/1126-6708/2009/12/002.

Sources

[edit]
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gaussian_integral&oldid=1335743930"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp