Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gallium(III) oxide

From Wikipedia, the free encyclopedia
Gallium(III) trioxide
β-Ga2O3 crystal
Crystal structure of β-Ga2O3
Names
Other names
gallium trioxide, gallium sesquioxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.031.525Edit this at Wikidata
EC Number
  • 234-691-7
RTECS number
  • LW9650000
UNII
  • InChI=1S/2Ga.3O checkY
    Key: QZQVBEXLDFYHSR-UHFFFAOYSA-N checkY
  • InChI=1/2Ga.3O/rGa2O3/c3-1-5-2-4
    Key: QZQVBEXLDFYHSR-OGCFUIRMAC
  • O=[Ga]O[Ga]=O
Properties
Ga2O3
Molar mass187.444 g/mol
Appearancewhite crystalline powder
Melting point1,725 °C (3,137 °F; 1,998 K)[1]
insoluble
Solubilitysoluble in mostacids
Structure[2][3]
Monoclinic,mS20,space group = C2/m, No. 12
a = 1.2232 nm,b = 0.3041 nm,c = 0.5801 nm
α = 90°, β = 103.73°, γ = 90°
β-phase
4
Thermochemistry[4]
92.1 J/(mol·K)
85.0 J/(mol·K)
−1089.1 kJ/mol
−998.3 kJ/mol
Enthalpy of fusionfHfus)
100 kJ/mol
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Gallium(III) oxide is aninorganic compound with the formulaGa2O3. Anultra-wide-bandgap semiconductor, it has been studied for applications inpower electronics,phosphors, andgas sensing.[5][6][7] The compound has severalpolymorphs, of which themonoclinic β-phase is the most stable.

Preparation

[edit]

Hydrated gallium trioxide precipitated uponneutralization of acidic or basic solution of gallium salt. Also, it is formed on heating gallium in air or by thermally decomposinggallium nitrate at 200–250 °C.

Crystalline Ga2O3 occur in five polymorphs, α, β, γ, δ, and ε. Of these polymorphs β-Ga2O3 is the most thermodynamically stable phase at standard temperature and pressure[8] while α-Ga2O3 is the most stable polymorph under high pressures.[9]

Bulk substrates of β-Ga2O3 can be produced, which is one of the major advantages of this material system. Bulk substrates can be produced in multiple orientations and by multiple techniques.[15][16]

Diagram of how gallium oxide is grown by the Czochralski method
  • α-Ga2O3 can be obtained by heating β-Ga2O3 at 65 kbar and 1100 °C. It has acorundum structure. The hydrated form can be prepared by decomposing precipitated and "aged" gallium hydroxide at 500 °C.Epitaxial thin films of α-Ga2O3 deposited on c-plane (0001), m-plane (1010), or a-plane (1120)sapphire substrates have been demonstrated.
  • γ-Ga2O3 is prepared by rapidly heating the hydroxide gel at 400–500 °C. A more crystalline form of this polymorph can be prepared directly from gallium metal by a solvothermal synthesis.[17]
  • δ-Ga2O3 is obtained by heating Ga(NO3)3 at 250 °C.[18]
  • ε-Ga2O3 is prepared by heating δ-Ga2O3 at 550 °C.[8] Thin films of ε-Ga2O3 are deposited by means ofmetalorganic vapour-phase epitaxy usingtrimethylgallium and water on sapphire substrates at temperatures between 550 and 650 °C[19]

Reactions

[edit]

Gallium(III) trioxide isamphoteric.[20] It reacts withalkali metal oxides at high temperature to form, e.g., NaGaO2, and with Mg, Zn, Co, Ni, Cu oxides to formspinels, e.g., MgGa2O4.[21]It dissolves in strong alkali to form a solution of the gallate ion,Ga(OH)
4
.

With HCl, it formsgallium trichloride GaCl3.[22]

Ga2O3 + 6 HCl → 2 GaCl3 + 3 H2O

It can be reduced togallium suboxide (gallium(I) oxide) Ga2O by H2.[23] or by reaction with gallium metal:[24]

Ga2O3 + 2 H2 → Ga2O + 2 H2O
Ga2O3 + 4 Ga → 3 Ga2O

Structure

[edit]

β-Ga2O3, with a melting point of 1900 °C, is the most stable crystalline modification. The oxide ions are in a distorted cubic closest packing arrangement, and the gallium (III) ions occupy distorted tetrahedral and octahedral sites, with Ga–O bond distances of 1.83 and 2.00 Å respectively.[25]

α-Ga2O3 has the same structure (corundum) asα-Al2O3, wherein Ga ions are 6-coordinate.[26][27]

γ-Ga2O3 has a defect spinel structure similar to that ofγ-Al2O3.[28]

ε-Ga2O3 films deposited bymetalorganic vapour-phase epitaxy show a columnar structure withorthorhombic crystal symmetry. Macroscopically, this structure is seen byX-ray crystallography ashexagonal close packed.[29]

κ-Ga2O3 has anorthorhombic structure and forms with 120° twin domains, resulting in hexagonal symmetry which is often identified as ε-Ga2O3.[30]

β-Ga2O3 can also formalloys withalumina to yield β-(AlxGa1-x)O3.[31] This alloy can be used to form heterostructures and create a two-dimensional electron gas (2DEG).[32]

Phase of Ga2O3FigureCrystal structure name
α
Crystal structure of α-Ga2O3[27]
Rhombohedral

(Corundum)

β
Crystal structure of β-Ga2O3
Monoclinic
γ
Crystal structure of γ-Ga2O3[33]
Cubic defect spinel
δ
Crystal structure of δ-Ga2O3[34][35]
Body-centered cubic bixbyite
ε
Crystal structure of ε-Ga2O3[36]
Hexagonal
κ (subgroup of ε phase)[37]
Crystal structure of κ-Ga2O3[38]
Orthorhombic

Aspirational uses

[edit]

The β-phase'sbandgap of 4.7–4.9 eV and large-area, native substrates make it a potential competitor toGaN andSiC-based power electronics applications andsolar-blind UVphotodetectors.[7][39] The orthorhombic ĸ-Ga2O3 is the second most stable polymorph. The ĸ-phase has shown instability of subsurface doping density under thermal exposure.[40] Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared toGaN andSiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt.[7][41][42] β-Ga2O3 is thought to beradiation-hard, which makes it promising for military and space applications.[43][44]Gallium(III) oxide has been studied for usage as passive components in lasers,[45] phosphors,[5] and luminescent materials[46] as well as active components for gas sensors,[6] power diodes,[47] and power transistors.[48][49] Since the first publication in January 2012 by theNational Institute of Information and Communications Technology, in collaboration with Tamura Co., Ltd. and Koha Co., Ltd. of the world's first single-crystal gallium oxide (Ga2O3)field-effect transistors, the predominant interest in gallium oxide is in the β-polymorph forpower electronics.[50][7]

Monoclinic β-Ga2O3 has been compared with GaN- and SiC-based power devices.[7] β-Ga2O3Schottky diodes have exceededbreakdown voltages of 2400 V.[47] β-Ga2O3/NiOxp–n diodes have exhibited breakdown voltages over 1200 V.[51] β-Ga2O3MOSFETs have individually achieved figures of merits of  fT of 27 GHz,[48] fMAX of 48 GHz,[49] and 5.4 MV/cm average breakdown field.[49] This field exceeds that which is possible in SiC or GaN.

ε-Ga2O3 thin films deposited on sapphire have been investigated assolar-blind UVphotodetector.[39]

References

[edit]
  1. ^Patnaik, Pradyot (2002)Handbook of Inorganic Chemicals. McGraw-Hill.ISBN 0-07-049439-8.
  2. ^Dohy, D.; Gavarri, J. R. (1983). "Oxyde β-Ga2O3: Champ de force, dilatation thermique, et rigidité anisotropes".Journal of Solid State Chemistry (in French).49 (1):107–117.Bibcode:1983JSSCh..49..107D.doi:10.1016/0022-4596(83)90222-0.
  3. ^Geller, S. (1 September 1960). "Crystal Structure of β-Ga2O3".The Journal of Chemical Physics.33 (3):676–684.Bibcode:1960JChPh..33..676G.doi:10.1063/1.1731237.
  4. ^Haynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. pp. 5.20, 6.157.ISBN 1-4398-5511-0.
  5. ^abLin, Jianhua; Zhou, Liuyan; Shen, Yuyu; Fu, Jie; Chen, Yanling; Lei, Lei; Ye, Renguang; Shen, Yang; Deng, Degang; Xu, Shiqing (10 December 2022). "[Zn2+-Ge4+] co-substitutes [Ga3+-Ga3+] to coordinately broaden the near-infrared emission of Cr3+ in Ga2O3 phosphors".Physical Chemistry Chemical Physics.25 (3):2090–2097.doi:10.1039/D2CP04737C.PMID 36562283.S2CID 254561209.
  6. ^abLiu, Zhifu; Yamazaki, Toshinari; Shen, Yanbai; Kikuta, Toshio; Nakatani, Noriyuki; Li, Yongxiang (22 February 2008). "O2 and CO sensing of Ga2O3 multiple nanowire gas sensors".Sensors and Actuators B: Chemical.129 (2):666–670.doi:10.1016/j.snb.2007.09.055.
  7. ^abcdeGreen, Andrew J.; Speck, James; Xing, Grace; Moens, Peter; Allerstam, Fredrik; Gumaelius, Krister; Neyer, Thomas; Arias-Purdue, Andrea; Mehrotra, Vivek; Kuramata, Akito; Sasaki, Kohei; Watanabe, Shinya; Koshi, Kimiyoshi; Blevins, John; Bierwagen, Oliver (1 February 2022)."β-Gallium oxide power electronics".APL Materials.10 (2): 029201.Bibcode:2022APLM...10b9201G.doi:10.1063/5.0060327.S2CID 246660179.
  8. ^abBailar, J; Emeléus, H; Nyholm, R;Trotman-Dickenson, A. F. (1973).Comprehensive Inorganic Chemistry. Vol. 1, p. 1091.
  9. ^Ma, Yan-Mei; et al. (2008). "High-Pressure and High-Temperature Behaviour of Gallium Oxide".Chinese Physics Letters.25 (5):1603–1605.doi:10.1088/0256-307X/25/5/022.S2CID 250882992.
  10. ^Rafie Borujeny, E.; Sendetskyi, O.; Fleischauer, M. D.; Cadien, K. C. (2020). "Low Thermal Budget Heteroepitaxial Gallium Oxide Thin Films Enabled by Atomic Layer Deposition".ACS Applied Materials & Interfaces.12 (39):44225–44237.doi:10.1021/acsami.0c08477.PMID 32865966.S2CID 221403770.
  11. ^Green, Andrew J.; Speck, James; Xing, Grace; Moens, Peter; Allerstam, Fredrik; Gumaelius, Krister; Neyer, Thomas; Arias-Purdue, Andrea; Mehrotra, Vivek; Kuramata, Akito; Sasaki, Kohei; Watanabe, Shinya; Koshi, Kimiyoshi; Blevins, John; Bierwagen, Oliver (1 February 2022)."β-Gallium oxide power electronics".APL Materials.10 (2): 029201.Bibcode:2022APLM...10b9201G.doi:10.1063/5.0060327.S2CID 246660179.
  12. ^Yang, Duyoung; Kim, Byungsoo; Eom, Tae Hoon; Park, Yongjo; Jang, Ho Won (1 March 2022). "Epitaxial Growth of Alpha Gallium Oxide Thin Films on Sapphire Substrates for Electronic and Optoelectronic Devices: Progress and Perspective".Electronic Materials Letters.18 (2):113–128.Bibcode:2022EML....18..113Y.doi:10.1007/s13391-021-00333-5.S2CID 245773856.
  13. ^Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; Van de Walle, C. G.; Bellotti, E.; Chua, C. L.; Collazo, R.; Coltrin, M. E.; Cooper, J. A.; Evans, K. R. (2018)."Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges".Advanced Electronic Materials.4 (1) 1600501.doi:10.1002/aelm.201600501.S2CID 38628999.
  14. ^Zhang, Yuewei; Alema, Fikadu; Mauze, Akhil; Koksaldi, Onur S.; Miller, Ross; Osinsky, Andrei; Speck, James S. (1 February 2019)."MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature".APL Materials.7 (2): 022506.Bibcode:2019APLM....7b2506Z.doi:10.1063/1.5058059.S2CID 104453229.
  15. ^Galazka, Zbigniew (21 January 2022)."Growth of bulk β-Ga2O3 single crystals by the Czochralski method".Journal of Applied Physics.131 (3): 031103.Bibcode:2022JAP...131c1103G.doi:10.1063/5.0076962.S2CID 246074647.
  16. ^"Substrates".Novel Crystal Technology, Inc. 12 July 2018.
  17. ^Playford, Helen Y.; Hannon, Alex C.; Barney, Emma R.; Walton, Richard I. (2013). "Structures of Uncharacterised Polymorphs of Gallium Trioxide from Total Neutron Diffraction".Chemistry: A European Journal.19 (8):2803–13.doi:10.1002/chem.201203359.PMID 23307528.
  18. ^Li, Liandi; Wei, Wei; Behrens, Malte (July 2012). "Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation".Solid State Sciences.14 (7):971–981.Bibcode:2012SSSci..14..971L.doi:10.1016/j.solidstatesciences.2012.04.037.
  19. ^Boschi, F.; Bosi, M.; Berzina, T.; Buffagni, E.; Ferrari, C.; Fornari, R. (2015). "Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD".Journal of Crystal Growth.44:25–30.doi:10.1016/j.jcrysgro.2016.03.013.
  20. ^Ebbing, Darrell D.; Gammon, Steven D. (2010)General Chemistry, 9th ed., Thomson Brooks/Cole.ISBN 0538497521
  21. ^Downs, Anthony John (ed.) (1993)The Chemistry of Aluminium, Gallium, Indium and Thallium. Springer.ISBN 075140103X
  22. ^Zuckerman, J J and Hagen, A P eds. (2009)Inorganic Reactions and Methods, the Formation of Bonds to Halogens (Part 2), Wiley-VCH Verlag GmbH,ISBN 9780470145395
  23. ^Koch, H. F.; Girard, L. A.; Roundhill, D. M. (1999). "Determination of Gallium in a Cerium Surrogate and in Drops from a Copper Collector by ICP as Model Studies for the Removal of Gallium from Plutonium".Atomic Spectroscopy.20 (1): 30.
  24. ^Greenwood, N.N.; Emeleus, H. J. and Sharpe, A. G. (1963) "The chemistry of Gallium" inAdvances in Inorganic Chemistry and Radiochemistry, Vol. 5, Elsevier, Academic Press
  25. ^King, R. B. (1994)Encyclopedia of Inorganic Chemistry. Vol. 3. p. 1256.ISBN 978-0-470-86078-6.
  26. ^Eckert, L. J.;Bradt, R. C. (1973). "Thermal Expansion of Alpha Ga2O3".Journal of the American Ceramic Society.56 (4): 229.doi:10.1111/j.1151-2916.1973.tb12471.x.
  27. ^abMarezio, M.; Remeika, J. P. (1 March 1967). "Bond Lengths in the α-Ga2O3 Structure and the High-Pressure Phase of Ga2−xFexO3".The Journal of Chemical Physics.46 (5):1862–1865.doi:10.1063/1.1840945.
  28. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann. p. 247.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  29. ^Cora, I (2017)."The real structure of ε-Ga2O3 and its relation to κ-phase".CrystEngComm.19 (11):1509–1516.doi:10.1039/C7CE00123A.hdl:10831/67366.
  30. ^Fornari, R.; Pavesi, M.; Montedoro, V.; Klimm, D.; Mezzadri, F.; Cora, I.; Pécz, B.; Boschi, F.; Parisini, A.; Baraldi, A.; Ferrari, C.; Gombia, E.; Bosi, M. (1 November 2017). "Thermal stability of ε-Ga2O3 polymorph".Acta Materialia.140:411–416.Bibcode:2017AcMat.140..411F.doi:10.1016/j.actamat.2017.08.062.
  31. ^Anhar Uddin Bhuiyan, A F M; Feng, Zixuan; Johnson, Jared M.; Chen, Zhaoying; Huang, Hsien-Lien; Hwang, Jinwoo; Zhao, Hongping (16 September 2019)."MOCVD epitaxy of β -(AlxGa1−x)2O3 thin films on (010) Ga2O3 substrates and N-type doping".Applied Physics Letters.115 (12).doi:10.1063/1.5123495.ISSN 0003-6951.
  32. ^Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth (4 June 2018)."Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors".Applied Physics Letters.112 (23).doi:10.1063/1.5037095.ISSN 0003-6951.
  33. ^Playford, Helen. Y.; Hannon, Alex C.; Tucker, Matthew G.; Dawson, Daniel M.; Ashbrook, Sharon E.; Kastiban, Reza J.; Sloan, Jeremy; Walton, Richard I. (24 July 2014). "Characterization of Structural Disorder in γ-Ga2O3".The Journal of Physical Chemistry C.118 (29):16188–16198.doi:10.1021/jp5033806.hdl:10023/6874.
  34. ^Roy, Rustum; Hill, V. G.; Osborn, E. F. (1952). "Polymorphism of Ga2O3 and the System Ga2O3—H2O".Journal of the American Chemical Society.74 (3):719–722.Bibcode:1952JAChS..74..719R.doi:10.1021/ja01123a039.
  35. ^Prewitt, Charles T.; Shannon, Robert D.; Rogers, Donald Burl; Sleight, Arthur W. (1969). "C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure".Inorganic Chemistry.8 (9):1985–1993.doi:10.1021/ic50079a033.
  36. ^Playford, Helen Y.; Hannon, Alex C.; Barney, Emma R.; Walton, Richard I. (18 February 2013). "Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction".Chemistry: A European Journal.19 (8):2803–2813.doi:10.1002/chem.201203359.PMID 23307528.
  37. ^Spencer, Joseph A.; Mock, Alyssa L.; Jacobs, Alan G.; Schubert, Mathias; Zhang, Yuhao; Tadjer, Marko J. (1 March 2022). "A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3".Applied Physics Reviews.9 (1): 011315.Bibcode:2022ApPRv...9a1315S.doi:10.1063/5.0078037.S2CID 247259950.
  38. ^Cora, Ildikó; Mezzadri, Francesco; Boschi, Francesco; Bosi, Matteo; Čaplovičová, Maria; Calestani, Gianluca; Dódony, István; Pécz, Béla; Fornari, Roberto (13 March 2017). "The real structure of ε-Ga2O3 and its relation to κ-phase".CrystEngComm.19 (11):1509–1516.doi:10.1039/C7CE00123A.hdl:10831/67366.S2CID 102474875.
  39. ^abPavesi, M. (2018). "ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors".Materials Chemistry and Physics.205:502–507.doi:10.1016/j.matchemphys.2017.11.023.
  40. ^Rajabi Kalvani, Payam; Parisini, Antonella; Sozzi, Giovanna; Borelli, Carmine; Mazzolini, Piero; Bierwagen, Oliver; Vantaggio, Salvatore; Egbo, Kingsley; Bosi, Matteo; Seravalli, Luca; Fornari, Roberto (4 October 2023)."Interfacial Properties of the SnO/κ-Ga 2 O 3 p-n Heterojunction: A Case of Subsurface Doping Density Reduction via Thermal Treatment in κ-Ga 2 O 3".ACS Applied Materials & Interfaces.15 (39):45997–46009.doi:10.1021/acsami.3c08841.ISSN 1944-8244.PMC 10561148.PMID 37733937.
  41. ^Reese, Samantha B.; Remo, Timothy; Green, Johney; Zakutayev, Andriy (17 April 2019)."How Much Will Gallium Oxide Power Electronics Cost?".Joule.3 (4):903–907.Bibcode:2019Joule...3..903R.doi:10.1016/j.joule.2019.01.011.S2CID 127789383.
  42. ^Heinselman, Karen N.; Haven, Drew; Zakutayev, Andriy; Reese, Samantha B. (3 August 2022)."Projected Cost of Gallium Oxide Wafers from Edge-Defined Film-Fed Crystal Growth".Crystal Growth & Design.22 (8):4854–4863.Bibcode:2022CrGrD..22.4854H.doi:10.1021/acs.cgd.2c00340.
  43. ^Bauman, D. A.; Borodkin, A. I.; Petrenko, A. A.; Panov, D. I.; Kremleva, A. V.; Spiridonov, V. A.; Zakgeim, D. A.; Silnikov, M. V.; Odnoblyudov, M. A.; Romanov, A. E.; Bougrov, V. E. (1 March 2021). "On improving the radiation resistance of gallium oxide for space applications".Acta Astronautica.180:125–129.Bibcode:2021AcAau.180..125B.doi:10.1016/j.actaastro.2020.12.010.S2CID 230578016.
  44. ^Pearton, Stephen J.; Ren, Fan; Law, Mark; Mastro, Michael (2021).Fundamental Studies and Modeling of Radiation Effects in beta-Gallium Oxide. Defense Threat Reduction Agency, U.S.
  45. ^Deng, Huiyang; Leedle, Kenneth J.; Miao, Yu; Black, Dylan S.; Urbanek, Karel E.; McNeur, Joshua; Kozák, Martin; Ceballos, Andrew; Hommelhoff, Peter; Solgaard, Olav; Byer, Robert L.; Harris, James S. (April 2020)."Ga2O3-Based Optical Applications: Gallium Oxide for High-Power Optical Applications (Advanced Optical Materials 7/2020)".Advanced Optical Materials.8 (7) 2070026.doi:10.1002/adom.202070026.S2CID 216243413.
  46. ^Nogales, E; Méndez, B; Piqueras, J; García, J A (18 March 2009)."Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices"(PDF).Nanotechnology.20 (11) 115201.Bibcode:2009Nanot..20k5201N.doi:10.1088/0957-4484/20/11/115201.PMID 19420434.S2CID 23058882.
  47. ^abLi, Wenshen; Nomoto, Kazuki; Hu, Zongyang; Jena, Debdeep; Xing, Huili Grace (January 2020)."Field-Plated Ga2O3 Trench Schottky Barrier Diodes With a BV2/Ron,sp of up to 0.95 GW/cm2".IEEE Electron Device Letters.41 (1):107–110.doi:10.1109/LED.2019.2953559.S2CID 209696027.
  48. ^abXia, Zhanbo; Xue, Hao; Joishi, Chandan; Mcglone, Joe; Kalarickal, Nidhin Kurian; Sohel, Shahadat H.; Brenner, Mark; Arehart, Aaron; Ringel, Steven; Lodha, Saurabh; Lu, Wu; Rajan, Siddharth (July 2019)."β-Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz".IEEE Electron Device Letters.40 (7):1052–1055.Bibcode:2019IEDL...40.1052X.doi:10.1109/LED.2019.2920366.S2CID 195439906.
  49. ^abcSaha, Chinmoy Nath; Vaidya, Abhishek; Bhuiyan, A. F. M. Anhar Uddin; Meng, Lingyu; Zhao, Hongping; Singisetti, Uttam (2 November 2022). "Beta-Ga2O3 MOSFETs with near 50 GHz fMAX and 5.4 MV/cm average breakdown field".arXiv:2211.01088 [cond-mat.mtrl-sci].
  50. ^Higashiwaki, Masataka; Sasaki, Kohei; Kuramata, Akito; Masui, Takekazu; Yamakoshi, Shigenobu (2 January 2012). "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates".Applied Physics Letters.100 (1): 013504.Bibcode:2012ApPhL.100a3504H.doi:10.1063/1.3674287.
  51. ^Wang, Chenlu; Gong, Hehe; Lei, Weina; Cai, Yuncong; Hu, Zhuangzhuang; Xu, Shengrui; Liu, Zhihong; Feng, Qian; Zhou, Hong; Ye, Jiandong; Zhang, Jincheng; Zhang, Rong; Hao, Yue (April 2021). "Demonstration of the p-NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes With BV2/Ron,sp Figures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2".IEEE Electron Device Letters.42 (4):485–488.Bibcode:2021IEDL...42..485W.doi:10.1109/LED.2021.3062851.S2CID 232372680.
Gallium(−V)
Gallium(I)
Gallium(II)
Gallium(I,III)
Gallium(III)
Organogallium(III) compounds
Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Oxides are sorted byoxidation state.Category:Oxides

Retrieved from "https://en.wikipedia.org/w/index.php?title=Gallium(III)_oxide&oldid=1336408237"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp