Hydrated gallium trioxide precipitated uponneutralization of acidic or basic solution of gallium salt. Also, it is formed on heating gallium in air or by thermally decomposinggallium nitrate at 200–250 °C.
Crystalline Ga2O3 occur in five polymorphs, α, β, γ, δ, and ε. Of these polymorphs β-Ga2O3 is the most thermodynamically stable phase at standard temperature and pressure[8] while α-Ga2O3 is the most stable polymorph under high pressures.[9]
β-Ga2O3epitaxial thin films can be depositedheteroepitaxially on substrates such as sapphire, GaN, SiC, and Si, as well ashomoepitaxially. For example,ALD onsapphire substrates at temperatures between 190 °C and 550 °C have been demonstrated.[10] High-quality β-Ga2O3 films have also been grown using techniques such asMBE,HVPE, andMOVPE (also known as MOCVD or OMVPE).[11] HVPE is preferred for verticalpower semiconductor devices due to its fast growth rate.[12] β-Ga2O3 epitaxial films grown by MOVPE exhibit higherelectron mobilities and lower backgroundcarrier concentrations than those grown by other thin-film growth techniques.[13][14]
Bulk substrates of β-Ga2O3 can be produced, which is one of the major advantages of this material system. Bulk substrates can be produced in multiple orientations and by multiple techniques.[15][16]
Diagram of how gallium oxide is grown by the Czochralski method
α-Ga2O3 can be obtained by heating β-Ga2O3 at 65 kbar and 1100 °C. It has acorundum structure. The hydrated form can be prepared by decomposing precipitated and "aged" gallium hydroxide at 500 °C.Epitaxial thin films of α-Ga2O3 deposited on c-plane (0001), m-plane (1010), or a-plane (1120)sapphire substrates have been demonstrated.
γ-Ga2O3 is prepared by rapidly heating the hydroxide gel at 400–500 °C. A more crystalline form of this polymorph can be prepared directly from gallium metal by a solvothermal synthesis.[17]
δ-Ga2O3 is obtained by heating Ga(NO3)3 at 250 °C.[18]
ε-Ga2O3 is prepared by heating δ-Ga2O3 at 550 °C.[8] Thin films of ε-Ga2O3 are deposited by means ofmetalorganic vapour-phase epitaxy usingtrimethylgallium and water on sapphire substrates at temperatures between 550 and 650 °C[19]
Gallium(III) trioxide isamphoteric.[20] It reacts withalkali metal oxides at high temperature to form, e.g., NaGaO2, and with Mg, Zn, Co, Ni, Cu oxides to formspinels, e.g., MgGa2O4.[21]It dissolves in strong alkali to form a solution of the gallate ion,Ga(OH)− 4.
β-Ga2O3, with a melting point of 1900 °C, is the most stable crystalline modification. The oxide ions are in a distorted cubic closest packing arrangement, and the gallium (III) ions occupy distorted tetrahedral and octahedral sites, with Ga–O bond distances of 1.83 and 2.00 Å respectively.[25]
α-Ga2O3 has the same structure (corundum) asα-Al2O3, wherein Ga ions are 6-coordinate.[26][27]
γ-Ga2O3 has a defect spinel structure similar to that ofγ-Al2O3.[28]
κ-Ga2O3 has anorthorhombic structure and forms with 120° twin domains, resulting in hexagonal symmetry which is often identified as ε-Ga2O3.[30]
β-Ga2O3 can also formalloys withalumina to yield β-(AlxGa1-x)O3.[31] This alloy can be used to form heterostructures and create a two-dimensional electron gas (2DEG).[32]
The β-phase'sbandgap of 4.7–4.9 eV and large-area, native substrates make it a potential competitor toGaN andSiC-based power electronics applications andsolar-blind UVphotodetectors.[7][39] The orthorhombic ĸ-Ga2O3 is the second most stable polymorph. The ĸ-phase has shown instability of subsurface doping density under thermal exposure.[40] Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared toGaN andSiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt.[7][41][42] β-Ga2O3 is thought to beradiation-hard, which makes it promising for military and space applications.[43][44]Gallium(III) oxide has been studied for usage as passive components in lasers,[45] phosphors,[5] and luminescent materials[46] as well as active components for gas sensors,[6] power diodes,[47] and power transistors.[48][49] Since the first publication in January 2012 by theNational Institute of Information and Communications Technology, in collaboration with Tamura Co., Ltd. and Koha Co., Ltd. of the world's first single-crystal gallium oxide (Ga2O3)field-effect transistors, the predominant interest in gallium oxide is in the β-polymorph forpower electronics.[50][7]
Monoclinic β-Ga2O3 has been compared with GaN- and SiC-based power devices.[7] β-Ga2O3Schottky diodes have exceededbreakdown voltages of 2400 V.[47] β-Ga2O3/NiOxp–n diodes have exhibited breakdown voltages over 1200 V.[51] β-Ga2O3MOSFETs have individually achieved figures of merits of fT of 27 GHz,[48] fMAX of 48 GHz,[49] and 5.4 MV/cm average breakdown field.[49] This field exceeds that which is possible in SiC or GaN.
^Patnaik, Pradyot (2002)Handbook of Inorganic Chemicals. McGraw-Hill.ISBN0-07-049439-8.
^Dohy, D.; Gavarri, J. R. (1983). "Oxyde β-Ga2O3: Champ de force, dilatation thermique, et rigidité anisotropes".Journal of Solid State Chemistry (in French).49 (1):107–117.Bibcode:1983JSSCh..49..107D.doi:10.1016/0022-4596(83)90222-0.
^abLin, Jianhua; Zhou, Liuyan; Shen, Yuyu; Fu, Jie; Chen, Yanling; Lei, Lei; Ye, Renguang; Shen, Yang; Deng, Degang; Xu, Shiqing (10 December 2022). "[Zn2+-Ge4+] co-substitutes [Ga3+-Ga3+] to coordinately broaden the near-infrared emission of Cr3+ in Ga2O3 phosphors".Physical Chemistry Chemical Physics.25 (3):2090–2097.doi:10.1039/D2CP04737C.PMID36562283.S2CID254561209.
^abLiu, Zhifu; Yamazaki, Toshinari; Shen, Yanbai; Kikuta, Toshio; Nakatani, Noriyuki; Li, Yongxiang (22 February 2008). "O2 and CO sensing of Ga2O3 multiple nanowire gas sensors".Sensors and Actuators B: Chemical.129 (2):666–670.doi:10.1016/j.snb.2007.09.055.
^abcdeGreen, Andrew J.; Speck, James; Xing, Grace; Moens, Peter; Allerstam, Fredrik; Gumaelius, Krister; Neyer, Thomas; Arias-Purdue, Andrea; Mehrotra, Vivek; Kuramata, Akito; Sasaki, Kohei; Watanabe, Shinya; Koshi, Kimiyoshi; Blevins, John; Bierwagen, Oliver (1 February 2022)."β-Gallium oxide power electronics".APL Materials.10 (2): 029201.Bibcode:2022APLM...10b9201G.doi:10.1063/5.0060327.S2CID246660179.
^abBailar, J; Emeléus, H; Nyholm, R;Trotman-Dickenson, A. F. (1973).Comprehensive Inorganic Chemistry. Vol. 1, p. 1091.
^Ma, Yan-Mei; et al. (2008). "High-Pressure and High-Temperature Behaviour of Gallium Oxide".Chinese Physics Letters.25 (5):1603–1605.doi:10.1088/0256-307X/25/5/022.S2CID250882992.
^Rafie Borujeny, E.; Sendetskyi, O.; Fleischauer, M. D.; Cadien, K. C. (2020). "Low Thermal Budget Heteroepitaxial Gallium Oxide Thin Films Enabled by Atomic Layer Deposition".ACS Applied Materials & Interfaces.12 (39):44225–44237.doi:10.1021/acsami.0c08477.PMID32865966.S2CID221403770.
^Green, Andrew J.; Speck, James; Xing, Grace; Moens, Peter; Allerstam, Fredrik; Gumaelius, Krister; Neyer, Thomas; Arias-Purdue, Andrea; Mehrotra, Vivek; Kuramata, Akito; Sasaki, Kohei; Watanabe, Shinya; Koshi, Kimiyoshi; Blevins, John; Bierwagen, Oliver (1 February 2022)."β-Gallium oxide power electronics".APL Materials.10 (2): 029201.Bibcode:2022APLM...10b9201G.doi:10.1063/5.0060327.S2CID246660179.
^Yang, Duyoung; Kim, Byungsoo; Eom, Tae Hoon; Park, Yongjo; Jang, Ho Won (1 March 2022). "Epitaxial Growth of Alpha Gallium Oxide Thin Films on Sapphire Substrates for Electronic and Optoelectronic Devices: Progress and Perspective".Electronic Materials Letters.18 (2):113–128.Bibcode:2022EML....18..113Y.doi:10.1007/s13391-021-00333-5.S2CID245773856.
^"Substrates".Novel Crystal Technology, Inc. 12 July 2018.
^Playford, Helen Y.; Hannon, Alex C.; Barney, Emma R.; Walton, Richard I. (2013). "Structures of Uncharacterised Polymorphs of Gallium Trioxide from Total Neutron Diffraction".Chemistry: A European Journal.19 (8):2803–13.doi:10.1002/chem.201203359.PMID23307528.
^Boschi, F.; Bosi, M.; Berzina, T.; Buffagni, E.; Ferrari, C.; Fornari, R. (2015). "Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD".Journal of Crystal Growth.44:25–30.doi:10.1016/j.jcrysgro.2016.03.013.
^Ebbing, Darrell D.; Gammon, Steven D. (2010)General Chemistry, 9th ed., Thomson Brooks/Cole.ISBN0538497521
^Downs, Anthony John (ed.) (1993)The Chemistry of Aluminium, Gallium, Indium and Thallium. Springer.ISBN075140103X
^Zuckerman, J J and Hagen, A P eds. (2009)Inorganic Reactions and Methods, the Formation of Bonds to Halogens (Part 2), Wiley-VCH Verlag GmbH,ISBN9780470145395
^Koch, H. F.; Girard, L. A.; Roundhill, D. M. (1999). "Determination of Gallium in a Cerium Surrogate and in Drops from a Copper Collector by ICP as Model Studies for the Removal of Gallium from Plutonium".Atomic Spectroscopy.20 (1): 30.
^Greenwood, N.N.; Emeleus, H. J. and Sharpe, A. G. (1963) "The chemistry of Gallium" inAdvances in Inorganic Chemistry and Radiochemistry, Vol. 5, Elsevier, Academic Press
^King, R. B. (1994)Encyclopedia of Inorganic Chemistry. Vol. 3. p. 1256.ISBN978-0-470-86078-6.
^abMarezio, M.; Remeika, J. P. (1 March 1967). "Bond Lengths in the α-Ga2O3 Structure and the High-Pressure Phase of Ga2−xFexO3".The Journal of Chemical Physics.46 (5):1862–1865.doi:10.1063/1.1840945.
^Playford, Helen. Y.; Hannon, Alex C.; Tucker, Matthew G.; Dawson, Daniel M.; Ashbrook, Sharon E.; Kastiban, Reza J.; Sloan, Jeremy; Walton, Richard I. (24 July 2014). "Characterization of Structural Disorder in γ-Ga2O3".The Journal of Physical Chemistry C.118 (29):16188–16198.doi:10.1021/jp5033806.hdl:10023/6874.
^Roy, Rustum; Hill, V. G.; Osborn, E. F. (1952). "Polymorphism of Ga2O3 and the System Ga2O3—H2O".Journal of the American Chemical Society.74 (3):719–722.Bibcode:1952JAChS..74..719R.doi:10.1021/ja01123a039.
^Prewitt, Charles T.; Shannon, Robert D.; Rogers, Donald Burl; Sleight, Arthur W. (1969). "C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure".Inorganic Chemistry.8 (9):1985–1993.doi:10.1021/ic50079a033.
^Playford, Helen Y.; Hannon, Alex C.; Barney, Emma R.; Walton, Richard I. (18 February 2013). "Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction".Chemistry: A European Journal.19 (8):2803–2813.doi:10.1002/chem.201203359.PMID23307528.
^Spencer, Joseph A.; Mock, Alyssa L.; Jacobs, Alan G.; Schubert, Mathias; Zhang, Yuhao; Tadjer, Marko J. (1 March 2022). "A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3".Applied Physics Reviews.9 (1): 011315.Bibcode:2022ApPRv...9a1315S.doi:10.1063/5.0078037.S2CID247259950.
^Cora, Ildikó; Mezzadri, Francesco; Boschi, Francesco; Bosi, Matteo; Čaplovičová, Maria; Calestani, Gianluca; Dódony, István; Pécz, Béla; Fornari, Roberto (13 March 2017). "The real structure of ε-Ga2O3 and its relation to κ-phase".CrystEngComm.19 (11):1509–1516.doi:10.1039/C7CE00123A.hdl:10831/67366.S2CID102474875.
^abPavesi, M. (2018). "ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors".Materials Chemistry and Physics.205:502–507.doi:10.1016/j.matchemphys.2017.11.023.
^Bauman, D. A.; Borodkin, A. I.; Petrenko, A. A.; Panov, D. I.; Kremleva, A. V.; Spiridonov, V. A.; Zakgeim, D. A.; Silnikov, M. V.; Odnoblyudov, M. A.; Romanov, A. E.; Bougrov, V. E. (1 March 2021). "On improving the radiation resistance of gallium oxide for space applications".Acta Astronautica.180:125–129.Bibcode:2021AcAau.180..125B.doi:10.1016/j.actaastro.2020.12.010.S2CID230578016.
^abcSaha, Chinmoy Nath; Vaidya, Abhishek; Bhuiyan, A. F. M. Anhar Uddin; Meng, Lingyu; Zhao, Hongping; Singisetti, Uttam (2 November 2022). "Beta-Ga2O3 MOSFETs with near 50 GHz fMAX and 5.4 MV/cm average breakdown field".arXiv:2211.01088 [cond-mat.mtrl-sci].