Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Active laser medium

From Wikipedia, the free encyclopedia
(Redirected fromGain media)
Source of optical gain in a laser
Laser rods (from left to right):Ruby,alexandrite,Er:YAG,Nd:YAG

Theactive laser medium (also called again medium orlasing medium) is the source of opticalgain within alaser. The gain results from thestimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by apump source.

Examples of active laser media include:

In order to fire a laser, the active gain medium must be changed into a state in whichpopulation inversion occurs. The preparation of this state requires an external energy source and is known aslaser pumping. Pumping may be achieved with electrical currents (e.g. semiconductors, or gases viahigh-voltage discharges) or with light, generated bydischarge lamps or by other lasers (semiconductor lasers). More exotic gain media can be pumped bychemical reactions,nuclear fission,[7] or with high-energyelectron beams.[8]

Example of a model of gain medium

[edit]
Simplified scheme of levels in a gain medium

The simplest model of optical gain in real systems includes just two, energetically well separated, groups of sub-levels. Within each sub-level group, fast transitions ensure thatthermal equilibrium is reached quickly. Stimulated emissions between upper and lower groups, essential for gain, require the upper levels to be more populated than the corresponding lower ones. This situation is called population-inversion. It is more readily achieved if unstimulated transition rates between the two groups are slow, i.e. the upper levels aremetastable. Population inversions are more easily produced when only the lowest sublevels are occupied, requiring either low temperatures or well energetically split groups.

In the case ofamplification of optical signals, the lasing frequency is calledsignal frequency. If the externally provided energy required for the signal's amplification is optical, it would necessarily be at the same or higherpump frequency.

Cross-sections

[edit]

The simple medium can be characterized witheffective cross-sections ofabsorption andemission at frequencies ωp {\displaystyle ~\omega _{\rm {p}}~} and ωs{\displaystyle ~\omega _{\rm {s}}}.

The relative concentrations can be defined as n1=N1/N {\displaystyle ~n_{1}=N_{1}/N~} and n2=N2/N{\displaystyle ~n_{2}=N_{2}/N}.

The rate of transitions of an active center from the ground state to the excited state can be expressed like this: Wu=Ipσapωp+Isσasωs {\displaystyle ~W_{\rm {u}}={\frac {I_{\rm {p}}\sigma _{\rm {ap}}}{\hbar \omega _{\rm {p}}}}+{\frac {I_{\rm {s}}\sigma _{\rm {as}}}{\hbar \omega _{\rm {s}}}}~}.

While the rate of transitions back to the ground state can be expressed like: Wd=Ipσepωp+Isσesωs+1τ {\displaystyle ~W_{\rm {d}}={\frac {I_{\rm {p}}\sigma _{\rm {ep}}}{\hbar \omega _{\rm {p}}}}+{\frac {I_{\rm {s}}\sigma _{\rm {es}}}{\hbar \omega _{\rm {s}}}}+{\frac {1}{\tau }}~},where σas {\displaystyle ~\sigma _{\rm {as}}~} and σap {\displaystyle ~\sigma _{\rm {ap}}~} areeffective cross-sections of absorption at the frequencies of the signal and the pump, σes {\displaystyle ~\sigma _{\rm {es}}~} and σep {\displaystyle ~\sigma _{\rm {ep}}~} are the same for stimulated emission, and 1τ {\displaystyle ~{\frac {1}{\tau }}~} is rate of the spontaneous decay of the upper level.

Then, the kinetic equation for relative populations can be written as follows:

 dn2dt=Wun1Wdn2{\displaystyle ~{\frac {{\rm {d}}n_{2}}{{\rm {d}}t}}=W_{\rm {u}}n_{1}-W_{\rm {d}}n_{2}},

 dn1dt=Wun1+Wdn2 {\displaystyle ~{\frac {{\rm {d}}n_{1}}{{\rm {d}}t}}=-W_{\rm {u}}n_{1}+W_{\rm {d}}n_{2}~}However, these equations keep n1+n2=1 {\displaystyle ~n_{1}+n_{2}=1~}.

The absorption A {\displaystyle ~A~} at the pump frequency and the gain G {\displaystyle ~G~} at the signal frequency can be written as follows:

 A=N1σpaN2σpe {\displaystyle ~A=N_{1}\sigma _{\rm {pa}}-N_{2}\sigma _{\rm {pe}}~} and G=N2σseN1σsa {\displaystyle ~G=N_{2}\sigma _{\rm {se}}-N_{1}\sigma _{\rm {sa}}~}.

Steady-state solution

[edit]

In many cases the gain medium works in a continuous-wave orquasi-continuous regime, causing the timederivatives of populations to be negligible.

The steady-state solution can be written:

 n2=WuWu+Wd {\displaystyle ~n_{2}={\frac {W_{\rm {u}}}{W_{\rm {u}}+W_{\rm {d}}}}~}, n1=WdWu+Wd.{\displaystyle ~n_{1}={\frac {W_{\rm {d}}}{W_{\rm {u}}+W_{\rm {d}}}}.}

The dynamic saturation intensities can be defined:

 Ipo=ωp(σap+σep)τ {\displaystyle ~I_{\rm {po}}={\frac {\hbar \omega _{\rm {p}}}{(\sigma _{\rm {ap}}+\sigma _{\rm {ep}})\tau }}~}, Iso=ωs(σas+σes)τ {\displaystyle ~I_{\rm {so}}={\frac {\hbar \omega _{\rm {s}}}{(\sigma _{\rm {as}}+\sigma _{\rm {es}})\tau }}~}.

The absorption at strong signal: A0=NDσas+σes {\displaystyle ~A_{0}={\frac {ND}{\sigma _{\rm {as}}+\sigma _{\rm {es}}}}~}.

The gain at strong pump: G0=NDσap+σep {\displaystyle ~G_{0}={\frac {ND}{\sigma _{\rm {ap}}+\sigma _{\rm {ep}}}}~},where D=σpaσseσpeσsa {\displaystyle ~D=\sigma _{\rm {pa}}\sigma _{\rm {se}}-\sigma _{\rm {pe}}\sigma _{\rm {sa}}~}is determinant of cross-section.

Gain never exceeds value G0 {\displaystyle ~G_{0}~}, and absorption never exceeds value A0U {\displaystyle ~A_{0}U~}.

At given intensities Ip {\displaystyle ~I_{\rm {p}}~}, Is {\displaystyle ~I_{\rm {s}}~} of pump and signal, the gain and absorptioncan be expressed as follows:

 A=A0U+s1+p+s {\displaystyle ~A=A_{0}{\frac {U+s}{1+p+s}}~}, G=G0pV1+p+s {\displaystyle ~G=G_{0}{\frac {p-V}{1+p+s}}~},

where p=Ip/Ipo {\displaystyle ~p=I_{\rm {p}}/I_{\rm {po}}~}, s=Is/Iso {\displaystyle ~s=I_{\rm {s}}/I_{\rm {so}}~}, U=(σas+σes)σapD {\displaystyle ~U={\frac {(\sigma _{\rm {as}}+\sigma _{\rm {es}})\sigma _{\rm {ap}}}{D}}~}, V=(σap+σep)σasD {\displaystyle ~V={\frac {(\sigma _{\rm {ap}}+\sigma _{\rm {ep}})\sigma _{\rm {as}}}{D}}~} .

Identities

[edit]

The following identities[9] take place:UV=1 {\displaystyle U-V=1~}, A/A0+G/G0=1 . {\displaystyle ~A/A_{0}+G/G_{0}=1~.\ }

The state of gain medium can be characterized with a single parameter, such as population of the upper level, gain or absorption.

Efficiency of the gain medium

[edit]

The efficiency of again medium can be defined as E=IsGIpA {\displaystyle ~E={\frac {I_{\rm {s}}G}{I_{\rm {p}}A}}~}.

Within the same model, the efficiency can be expressed as follows: E=ωsωp1V/p1+U/s {\displaystyle ~E={\frac {\omega _{\rm {s}}}{\omega _{\rm {p}}}}{\frac {1-V/p}{1+U/s}}~}.

For efficient operation, both intensities—pump and signal—should exceed their saturation intensities: pV1 {\displaystyle ~{\frac {p}{V}}\gg 1~}, and sU1 {\displaystyle ~{\frac {s}{U}}\gg 1~}.

The estimates above are valid for a medium uniformly filled with pump and signal light.Spatial hole burning may slightly reduce the efficiency because some regions are pumped well, but the pump is not efficiently withdrawn by the signal in the nodes of the interference of counter-propagating waves.

See also

[edit]

References and notes

[edit]
  1. ^Hecht, Jeff.The Laser Guidebook: Second Edition. McGraw-Hill, 1992. (Chapter 22)
  2. ^Hecht, Chapter 22
  3. ^Hecht, Chapters 7-15
  4. ^Hecht, Chapters 18–21
  5. ^F. J. Duarte and L. W. Hillman (Eds.),Dye Laser Principles (Academic, New York, 1990).
  6. ^F. P. Schäfer (Ed.),Dye Lasers, 2nd Edition (Springer-Verlag, Berlin, 1990).
  7. ^McArthur, D. A.; Tollefsrud, P. B. (15 February 1975). "Observation of laser action in CO gas excited only by fission fragments".Applied Physics Letters.26 (4):187–190.Bibcode:1975ApPhL..26..187M.doi:10.1063/1.88110.
  8. ^Encyclopedia of laser physics and technology
  9. ^D.Kouznetsov; J.F.Bisson; K.Takaichi; K.Ueda (2005). "Single-mode solid-state laser with short wide unstable cavity".JOSA B.22 (8):1605–1619.Bibcode:2005JOSAB..22.1605K.doi:10.1364/JOSAB.22.001605.

External links

[edit]
  • Gain media Encyclopedia of Laser Physics and Technology
Types
Science
Optics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Active_laser_medium&oldid=1301966221"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp