Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

GJ 1061

Coordinates:Sky map03h 35m 59.69s, −44° 30′ 45.3″
From Wikipedia, the free encyclopedia
(Redirected fromGJ 1061 b)
Red dwarf star in the constellation Horologium
GJ 1061
GJ 1061 is located in the constellation Horologium.
GJ 1061 is located in the constellation Horologium.
GJ 1061
Location of GJ 1061 in the constellationHorologium

Observation data
Epoch J2000      Equinox J2000
ConstellationHorologium
Right ascension03h 35m 59.69916s[1]
Declination−44° 30′ 45.7308″[1]
Apparent magnitude (V)13.03[2]
Characteristics
Spectral typeM5.5 V[2]
Apparent magnitude (J)7.52 ± 0.02[3]
U−Bcolor index1.52[3]
B−Vcolor index1.90[3]
Astrometry
Radial velocity (Rv)1.49±0.23[1] km/s
Proper motion (μ)RA: 745.654mas/yr[1]
Dec.: −373.323mas/yr[1]
Parallax (π)272.1615±0.0316 mas[1]
Distance11.984 ± 0.001 ly
(3.6743 ± 0.0004 pc)
Absolute magnitude (MV)15.26[4]
Details
Mass0.125±0.003[5] M
Radius0.152±0.007[5] R
Luminosity (bolometric)0.001641±0.000037[5] L
Luminosity (visual, LV)0.00007[nb 1] L
Temperature2,977+72
−69
[5] K
Metallicity [Fe/H]−0.03±0.09[5] dex
Rotational velocity (v sin i)≤ 5[6] km/s
Age>7.0±0.5[7] Gyr
Other designations
GJ 1061,LHS 1565,LFT 295,LTT 1702, LP 995-46, L 372-58[3]
Database references
SIMBADdata
Exoplanet Archivedata

GJ 1061 is ared dwarfstar located 12light-years (3.7parsecs) fromEarth in the southernconstellation ofHorologium. Even though it is a relatively nearby star, it has anapparent visual magnitude of about 13,[2] so it can only be seen with at least a moderately-sizedtelescope.

Theproper motion of GJ 1061 has been known since 1974, but it was estimated to be further away: approximately 25 light-years (7.7 parsecs) distant based upon an estimated parallax of 0.130. TheRECONS accurately determined its distance in 1997. At that time, it was the20th-nearest star system to theSun. The discovery team noted that many more stars like this are likely to be discovered nearby.[2]

This star is a tiny, dim, red dwarf, close to the lower mass limit. It has an estimated mass of about 12.5% that of the Sun and is only about 0.2% asluminous.[5] The star displays no significantinfrared excess due to circumstellar dust.[8]

Planetary system

[edit]

On August 13, 2019, a planetary system was announced orbiting the star GJ 1061 by the Red Dots project for detecting terrestrial planets around nearby red dwarf stars.[7] The planet GJ 1061 d orbits in the conservativecircumstellar habitable zone of its star and the planet GJ 1061 c orbits in the inner edge of the habitable zone.[7] GJ 1061 is a non-variable star that does not suffer flares, so there is a greater probability that the exoplanets still conserve their atmosphere if they had one.[9]

The GJ 1061 planetary system[7]
Companion
(in order from star)
MassSemimajor axis
(AU)
Orbital period
(days)
EccentricityInclinationRadius
b≥1.37+0.16
−0.15
 M🜨
0.021±0.0013.204±0.001<0.31
c≥1.74±0.23 M🜨0.035±0.0016.689±0.005<0.29
d≥1.64+0.24
−0.23
 M🜨
0.054±0.00113.031+0.025
−0.032
<0.53

GJ 1061 c

[edit]

GJ 1061 c is a potentially habitableexoplanet orbiting within the limits of the optimistically defined habitable zone of itsred dwarf parent star.[10][11][7]

GJ 1061 c isat least 74% more massive than the Earth. The planet receives 35% more stellar flux than Earth and has an equilibrium temperature of 275 K (2 °C; 35 °F).[12] The average temperature on the surface would be warmer, 34 °C (307 K; 93 °F), provided the atmosphere is of similar composition to the Earth's.

GJ 1061 c orbits its parent star very closely, every 6.7 days at a distance of just 0.035au, so it is probablygravitationally locked and in synchronous rotation with its star.

GJ 1061 d

[edit]

GJ 1061 d is a potentially habitableexoplanet largely orbiting within the limits of the conservatively defined habitable zone of its parent red dwarf star.[10][13][7]

The exoplanet is at least 64% more massive than the Earth. The planet receives about 40% less stellar flux than Earth and has an estimated equilibrium temperature of 218 K (−55 °C; −67 °F).[10][7] The average temperature on the surface would be colder than Earth's and at around 250 K (−23 °C; −10 °F), provided the atmosphere is similar to that of Earth.

GJ 1061 d orbits its star every 13 days, and due to its close-in semi-major axis, it is likely that the exoplanet istidally locked.[14] However, if the planet's orbit is confirmed to be highly eccentric then this eccentricity could be desynchronising it, enabling the existence of non-synchronised states of equilibrium in its rotation, relative to which side of the planet is facing the star, and thereby it will experience a day/night cycle.[15]

Another solution for this planet gives it a slightly shorter period of 12.4 days and a slightly smallerminimum mass of 1.53 ME.[7]

See also

[edit]

Notes

[edit]
  1. ^Taking the absolute visual magnitude of GJ 1061,MV=15.26{\displaystyle \scriptstyle M_{V_{\ast }}=15.26}, and the absolute visual magnitude of the Sun,MV=4.83{\displaystyle \scriptstyle M_{V_{\odot }}=4.83}, the visual luminosity of GJ 1061 can therefore be calculated:LVLV=100.4(MVMV)=6.73×105{\displaystyle \scriptstyle {\frac {L_{V_{\ast }}}{L_{V_{\odot }}}}=10^{0.4\left(M_{V_{\odot }}-M_{V_{\ast }}\right)}=6.73\times 10^{-5}}

References

[edit]
  1. ^abcdeVallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  2. ^abcdHenry, Todd J.; et al. (1997). "The solar neighborhood IV: discovery of the twentieth nearest star".The Astronomical Journal.114:388–395.Bibcode:1997AJ....114..388H.doi:10.1086/118482.
  3. ^abcd"LHS 1565".SIMBAD.Centre de données astronomiques de Strasbourg. Retrieved2008-12-11.
  4. ^Scholz, R.-D.; et al. (2000). "New high-proper motion survey in the Southern sky".Astronomy and Astrophysics.353:958–969.Bibcode:2000A&A...353..958S.
  5. ^abcdefPineda, J. Sebastian; Youngblood, Allison; France, Kevin (September 2021)."The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars".The Astrophysical Journal.918 (1): 23.arXiv:2106.07656.Bibcode:2021ApJ...918...40P.doi:10.3847/1538-4357/ac0aea.S2CID 235435757. 40.
  6. ^Barnes, J. R.; et al. (April 2014)."Precision radial velocities of 15 M5-M9 dwarfs".Monthly Notices of the Royal Astronomical Society.439 (3):3094–3113.arXiv:1401.5350.Bibcode:2014MNRAS.439.3094B.doi:10.1093/mnras/stu172.S2CID 16005221.
  7. ^abcdefghDreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13)."Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061".Monthly Notices of the Royal Astronomical Society.493 (1): 536.arXiv:1908.04717.Bibcode:2020MNRAS.493..536D.doi:10.1093/mnras/staa248.S2CID 199551874.
  8. ^Avenhaus, H.; et al. (December 2012). "The nearby population of M-dwarfs with WISE: a search for warm circumstellar dust".Astronomy & Astrophysics.548: 15.arXiv:1209.0678.Bibcode:2012A&A...548A.105A.doi:10.1051/0004-6361/201219783.S2CID 56397054. A105.
  9. ^Starr, Michelle (27 August 2019)."Three Rocky Exoplanets Have Been Found Orbiting a Star Just 12 Light-Years Away".ScienceAlert. Retrieved2020-10-07.
  10. ^abc"The Habitable Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo".phl.upr.edu. Retrieved2020-03-31.
  11. ^"Exoplanet-catalog".Exoplanet Exploration: Planets Beyond our Solar System. Retrieved2020-03-31.
  12. ^"Trio of Super-Earths Found Orbiting Red Dwarf Gliese 1061 | Astronomy | Sci-News.com".Breaking Science News | Sci-News.com. Retrieved2020-03-31.
  13. ^"GJ 1061 d".exoplanetarchive.ipac.caltech.edu. Retrieved2020-10-07.
  14. ^"Exoplanet-catalog".Exoplanet Exploration: Planets Beyond our Solar System. Retrieved2020-10-07.
  15. ^Auclair-Desrotour, P.; et al. (2019)."Final spin states of eccentric ocean planets".Astronomy & Astrophysics.629. EDP Sciences: A132.arXiv:1907.06451.Bibcode:2019A&A...629A.132A.doi:10.1051/0004-6361/201935905.ISSN 0004-6361.While the semidiurnal tide drives the body towards the spin-orbit synchronous rotation, eccentricity tides tend to desynchronise it, and thereby enable the existence of non-synchronised states of equilibrium.

External links

[edit]
Primary membertype
Celestial objects by systems.
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
Stars
Bayer
Variable
HD
Other
Exoplanets
Star
clusters
NGC
Other
Galaxies
NGC
Other
Galaxy clusters
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=GJ_1061&oldid=1278356751"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp