This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this article. Unsourced material may be challenged and removed. Find sources: "General Electric CF6" – news ·newspapers ·books ·scholar ·JSTOR(November 2008) (Learn how and when to remove this message) |
CF6 | |
---|---|
![]() | |
At NASA'sGlenn Research Center in 1979 | |
Type | Turbofan |
National origin | United States |
Manufacturer | GE Aviation |
First run | 1971 |
Major applications | Airbus A300 Airbus A330 Boeing 747 Boeing 767 Lockheed C-5M Super Galaxy McDonnell Douglas DC-10 McDonnell Douglas MD-11 Kawasaki C-2 |
Number built | 8,300 (2018)[1] |
Developed from | General Electric TF39 |
Developed into | General Electric LM2500 General Electric LM6000 |
TheGeneral Electric CF6, US military designationsF103 andF138, is a family ofhigh-bypass turbofan engines produced byGE Aviation. Based on theTF39, the first high-power high-bypass jet engine, the CF6 powers a wide variety of civilian airliners. The basic engine core also powers theLM2500 andLM6000 marine and power generationturboshafts. It is gradually being replaced by the newerGEnx family.[2]
After developing theTF39 for theC-5 Galaxy in the late 1960s, GE offered a more powerful variant for civilian use, the CF6.[3] GE quickly found interest in two designs being offered for a recentEastern Airlines contract, theLockheed L-1011 and theMcDonnell Douglas DC-10. Lockheed eventually selected theRolls-Royce RB211, but the latter stuck with the CF6 and entered service in 1971. It was also selected for versions of theBoeing 747. Since then, the CF6 has powered versions of theAirbus A300,A310 andA330,Boeing 767,Lockheed C-5M Galaxy, andMcDonnell Douglas MD-11.
The high bypass of the CF6 represented a historic breakthrough in fuel efficiency.[4]
By 2018, GE has delivered more than 8,300 CF6s: 480 -6s, 2,200 -50s, 4,400 -80C2s, more than 730 -80E; and 3,000LM6000 industrial and marine derivatives.The in-service fleet include 3,400 engines, more than all theGE90s andGEnx, generating over 600shop visits per year.GE will be delivering engines well into the 2020s and they will fly for 20 to 25 years, until 2045-50: more than 75 years since the first CF6.[1]
Asexpress delivery spurs anair cargo resurgence,Boeing plans to increase the CF6-80C2-powered767 delivery rate from 2.5 to 3 per month in 2020, a type introduced in 1982.As CF6-80E1s are still delivered for the Airbus A330 andAirbus A330 MRTT, CF6 production will grow from 50 to 60-80 per year by 2020.GE also studiesreengining theProgress D-18-poweredAntonov An-124 freighters withCargoLogicAir, aVolga-Dnepr subsidiary.This would likely provide arange increase, and Volga-Dnepr Group operates 12 aircraft, implying a 50-60 engines withspares program.[1]
The CF6-6 was first used on theMcDonnell DouglasDC-10-10.
This initial version of the CF6 has a single-stage fan with one core booster stage, driven by a 5-stage LP (low pressure) turbine, turbocharging a 16-stage HP (high pressure)axial compressor driven by a 2-stage HP turbine; thecombustor is annular; separate exhaust nozzles are used for the fan and core airflows. The 86.4-in (2.19-m) diameter fan generates an airflow of 1,300 lb/s (590 kg/s), resulting in a relatively high bypass ratio of 5.72. Theoverall pressure ratio of the compression system is 24.3. At maximum take-off power, the engine develops a static thrust of 41,500 lb (185.05 kN).
The General Electric CF6-32 was to be a lower thrust derivative of the CF6-6 for the Boeing 757. In 1981, GE formally abandoned development of the engine, leaving the Boeing 757 engine market to Pratt & Whitney and Rolls-Royce.[5]
The CF6-50 series are high-bypass turbofan engines rated between 51,000 and 54,000 lb (227.41 to 240.79 kN, or '25 tons') of thrust. The CF6-50 was developed into the LM5000 industrialturboshaft engines. It was launched in1969 to power the long range McDonnell DouglasDC-10-30, and was derived from the earlier CF6-6.
Not long after the -6 entered service, an increase in thrust was required. It was obtained by increasing the mass flow through the core. Two booster stages were added to the LP (low pressure) compressor and the last two stages of the HP compressor were removed[6] which increased the overall pressure ratio to 29.3. Although the 86.4 in (2.19 m) diameter fan was retained, the airflow was raised to 1,450 lb/s (660 kg/s), yielding a static thrust of 51,000 lbf (227 kN). The increase in core flow decreased the bypass ratio to 4.26.
In late 1969, the CF6-50 was selected to power the then newAirbus A300.Air France became the launch customer for the A300 by ordering six aircraft in1971. In1975,KLM became the first airline to order theBoeing 747 powered by the CF6-50. This led further developments to the CF6 family such as the CF6-80. The CF6-50 also powered theBoeing YC-14 USAF AMST transport prototype.
The basic CF6-50 engine was also offered with a 10% thrust derate for the 747SR, a short-range high-cycle version used by All Nippon Airways for domestic Japanese operations. This engine is termed the CF6-45.
The engine is designated the General Electric F103 inUnited States Air Force service onKC-10 Extenders andBoeing E-4s.
The CF6-80 series are high-bypass turbofan engines with a thrust range of 48,000 to 75,000 lb (214 to 334 kN). Although the HP compressor still has 14 stages, GE did take the opportunity to tidy-up the design, by removing the empty air passage at compressor exit.[citation needed]
The -80 series is divided into four distinct models.
The CF6-80A3, which has a thrust rating of 48,000 to 50,000 lb (214 to 222 kN), powered two twinjets, theBoeing 767 andAirbus A310. The GE-powered 767 entered airline service in1982, and the GE powered A310 in early1983. It is rated forETOPS operations.
For the CF6-80A/A1, the fan diameter remains at 86.4 in (2.19 m), with an airflow of 1435 lb/s (651 kg/s). Overall pressure ratio is 28.0, with a bypass ratio of 4.66. Static thrust is 48,000 lbf (214 kN). The basic mechanical configuration is the same as the -50 series.
For the CF6-80C2-A1, the fan diameter is increased to 93 in (2.36 m), with an airflow of 1750 lb/s (790 kg/s). Overall pressure ratio is 30.4, with a bypass ratio of 5.15. Static thrust is 59,000 lb (263 kN). An extra stage is added to the LP compressor, and a 5th to the LP turbine.[7]
The CF6-80C2 is currently certified on fifteen commercial and militarywidebody aircraft models including theBoeing 747-400, andMcDonnell Douglas MD-11. The CF6-80C2 is also certified forETOPS-180 for theAirbus A300,Airbus A310,Boeing 767,KC-767A/J,E-767J,Kawasaki C-2, and (as the F138) theLockheed C-5M Super Galaxy andVC-25A.
The F138-GE-100 is a military designation given to the specifically modified version of the CF6-80C2, to produce 50,400–51,600 lbf, with Strict Noise Regulations and Green Emissions, specially and specifically designed forLockheed Martin C-5M Super Galaxy. This CF6 variant became the new standard for C-5 Galaxies in 2017 after the CF6's predecessor, the GE TF-39, was retired.
The CF6-80E1 has the highest thrust power of CF6-80 Series family, with the fan tip diameters increased to 96.2 in (2.443m), and an overall pressure ratio of 32.6 and bypass ratio of 5.3.[8] The 68,000 to 72,000 lbf (300 to 320 kN) variant competes with theRolls-Royce Trent 700 and thePratt & Whitney PW4000 to power theAirbus A330.[9]
The industrial and marine development of the CF6-80C2, theLM6000 Series, has found wide use including fast ferry and high speed cargo ship applications, as well as in power generation. The LM6000 gas turbine family provides power in the 40 to 56 MW range for utility, industrial, and oil & gas applications.[10]
In 2023,Bloomberg reported that European aviation regulators had determined that London-based AOG Technics, majority owned by Jose Zamora Yrala, whose nationality is listed as British on some forms and Venezuelan on others, supplied parts of unknown origin and false documents for repairs on CF6s.[11]
In1973, a CF6-6 fan assembly disintegrated, resulting in the loss ofcabin pressurization ofNational Airlines Flight 27 overNew Mexico, United States.[12]
In1979 a CF6-6 engine detached from the left wing ofAmerican Airlines Flight 191 due to faulty pylon maintenance, severing hydraulic lines and causing the aircraft to crash.
In1989, a CF6-6 fan disk separated from the engine and damaged all three hydraulic systems. The flight,United Airlines Flight 232, continued with no hydraulic power until it crash-landed at the airport inSioux City, Iowa.
In 2000, theNational Transportation Safety Board (NTSB) warned that the high-pressure compressor could crack.[13]
Following a series of high-pressure turbine failures on 6 September 1997,[14] 7 June 2000[15] and 8 December 2002,[16] and resulting in 767s being written off on 22 September 2000,[17] on 2 June 2006,[18] andon 28 October 2016,[19] theFederal Aviation Administration issued an airworthiness directive mandating inspections for over 600 engines and theNTSB believed that this number should be increased to include all -80 series engines with more than 3000 cycles since new or since last inspection.[20]
In May 2010, The NTSB warned that the low-pressure turbine rotor disks could fail.[21] Fouruncontained failures of CF6-45/50 engines in the preceding two years prompted it to issue an "urgent" recommendation to increase inspections of the engines on U.S. aircraft : none of the four incidents of rotor disk (rotating) unbalance and subsequent failure resulted in an accident, but parts of the engine did penetrate the engine housing in each case.[22]
Variant | CF6-6 | CF6-50 | CF6-80A | CF6-80C2 | CF6-80E1 |
---|---|---|---|---|---|
Type | Dual rotor,axial flow, high bypass ratioturbofan, annular combustor | ||||
Compressor | Fan & 1LP + 16HP | Fan & 3LP + 14HP | Fan & 4LP + 14HP | ||
Turbine | 2HP + 5LP | 2HP + 4LP | 2HP + 5LP | ||
Length | 188 in (478 cm) | 183 in (465 cm) | 167 in (424 cm) | 168 in (427 cm) | |
Overall diameter | 105 in (267 cm)[24][25][26] | 106–111 in (269–282 cm)[7] | 114 in (290 cm)[7] | ||
Fan diameter | 86.4 in (219 cm)[27] | 93 in (236 cm)[28] | 96.2 in (244 cm)[29] | ||
Blade Count[citation needed] | 38 | 34 | |||
Takeoffthrust | 41,500 lbf 185 kN | 51,500–54,000 lbf 229–240 kN | 48,000–50,000 lbf 210–220 kN | 52,200–61,960 lbf 232.2–275.6 kN | 65,800–69,800 lbf 293–310 kN |
Pressure ratio | 25–25.2 | 29.2–31.1 | 27.3–28.4 | 27.1–31.8 | 32.4–34.8 |
Bypass ratio | 5.76–5.92[24] | 4.24–4.4[25] | 4.59–4.66[26] | 5–5.31[7] | 5–5.1[30] |
Max. powerTSFC | 0.35 lb/lbf/h 9.9 g/kN/s[24] | 0.368–0.385 lb/lbf/h 10.4–10.9 g/kN/s[25] | 0.355–0.357 lb/lbf/h 10.1–10.1 g/kN/s[26] | 0.307–0.344 lb/lbf/h 8.7–9.7 g/kN/s[7] | 0.332–0.345 lb/lbf/h 9.4–9.8 g/kN/s[7] |
Application[31] | DC-10-10 | 747, DC-10-15/30, KC-10A,A300 | A310,767 | A300,A310, 747-400,767, E-767,Boeing KC-767, C-2,C-5M,MD-11 | A330,A330 MRTT |
TCDS | CF6-6[32] | CF6-50[32] | CF6-80A[33] | CF6-80C2[33] | CF6-80E1[34] |
Weight[a] | 8,176 lb 3,709 kg | 8,825–9,047 lb 4,003–4,104 kg | 8,760–8,776 lb 3,973–3,981 kg | 9,480–9,860 lb 4,300–4,470 kg | 11,225 lb 5,092 kg |
Max.LPrpm | 3,810 | 4,102 | 4,016 | 3,854 | 3,835 |
Max.HP rpm | 9,925 | 10,761 | 10,859 | 11,055 | 11,105 |
Thrust-to-weight ratio | 5.08 | 5.84–5.97 | 5.48–5.7 | 5.51–6.28 | 5.86–6.22 |
Related development
Comparable engines
Related lists
{{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link)