Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Günther Rupprechter

From Wikipedia, the free encyclopedia
Austrian scientist
A major contributor to this article appears to have aclose connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularlyneutral point of view. Please discuss further on thetalk page.(November 2024) (Learn how and when to remove this message)
Günther Rupprechter
BornJuly 1, 1966 (1966-07) (age 59)
CitizenshipAustrian
Alma materUniversity of Innsbruck
Known forPhysical chemistry,Surface science,Nanoscience,Nanotechnology
AwardsJochen Block Award of the German Catalysis Society (DECHEMA)

Austrian Academy of Sciences (ÖAW)

European Academy of Sciences (EurASc)
Scientific career
InstitutionsTechnische Universität Wien

Technische Universität Berlin

Fritz Haber InstituteMax Planck Society

Lawrence Berkeley National Laboratory

University of California at Berkeley

University of Innsbruck
Websitehttps://www.tuwien.at/tch/imc

ProfessorGünther Rupprechter (born July 1, 1966, inJenbach,Austria) is anAustrianscientist, full professor and currently Head of the Institute of Materials Chemistry,[1]Technische Universität Wien (TU Wien). He has worked inphysical chemistry,surface science,nanoscience andnanotechnology, particularly in the area of catalytic surface reactions onheterogeneous catalysts, identifying fundamental reaction steps at the atomic level by in situ andoperando spectroscopy andmicroscopy.

Rupprechter is "Director of Research" (speaker) of the FWF-funded Cluster of Excellence[2] "Materials for Energy Conversion and Storage (COE MECS)",[3] including 19 research groups at 4 Austrian universities/institutions. The COE MECS (2023–2028, with an option of extension to 2033) is one of three COEs in the natural sciences (among five first Clusters of Excellence in Austria[2]).

Education

[edit]

Günther Rupprechter earned aMaster of Science inChemistry (Mag. rer. nat.) with summa cum laude honors from theUniversity of Innsbruck,Austria, in 1992. In his PhD inPhysical Chemistry (Dr. rer. nat.), he worked with Konrad Hayek[4][5] at the Institute of Physical Chemistry of theUniversity of Innsbruck,Austria. Rupprechter studied nanocatalysts[6][7] byhigh resolution electron microscopy and got his PhD in 1996, also with summa cum laude honors. Part of the thesis work was carried out at theMax Planck Institute of Microstructure Physics (Halle an der Saale,Germany).[citation needed]

Career

[edit]

Afterpostdoctoral research in the Department of Chemistry of theUniversity of California at Berkeley and E.O.Lawrence Berkeley National Laboratory (1996–1998 with Prof.Gábor A. Somorjai),[8] Rupprechter became Group Leader forLaser Spectroscopy & Catalysis (1998–2006) at theFritz Haber Institute,Max Planck Society, Chemical Physics Department, Berlin,Germany. In 2005, he was awarded aHabilitation inPhysical Chemistry fromTechnische Universität Berlin,Germany.[citation needed] In the same year, Rupprechter was appointedProfessor (chair) of Surface & Interface Chemistry at the Institute of Materials Chemistry,[1]Technische Universität Wien (TU Wien),Austria. Since 2010, he is Head of the institute.[1]

Research

[edit]

Rupprechter's current research interests are primarily focused on catalytic surface reactions on heterogeneous catalysts. His research group[9] employs a four-pronged approach:

  1. Surface-Science-Based Model Catalysts: Prof. Rupprechter's work on planar model catalysts aims to understand fundamental processes that occur on catalytic surfaces via in situ/operando surface spectroscopy and microscopy,[10] bridging both the materials and pressure gaps.[11]
  2. Atomically Precise Clusters: He investigates atomically precise clusters to gain insights and control the behavior of catalytic materials.
  3. Industrial-Grade Nanomaterials: His research extends to the study of industrial-grade nanomaterials, which have practical applications in catalytic processes.
  4. Microkinetic Modeling and Simulation: The interpretation and verification of experimentaloperando spectra/images/patterns typically rely on theoretical support.

Rupprechter's overarching goal is to elucidate the molecular mechanisms of reactions relevant to a clean environment, energy conversion, and efficient resource utilization. Among others, molecular mechanisms ofhydrogen as clean fuel,methane reforming, CO2 and olefinhydrogenation, efficient automotive catalysis, andwaste valorization were studied. Materials of interest include mono- (Pt, Pd, Rh, Cu, Ni, Au, Co) and bimetallic (PdZn, Pd2Ga, PdCu, CuNi, CuZn, PdAu, AgAu, CuAu, RhAu) nanoparticles on supporting (mixed) oxides (Al2O3,SiO2,CeO2,PrO2,ZrO2,TiO2,ZnO,MgO,Ga2O3,Co3O4), perovskites (LCO, LSF), andcarbon (HOPG, GR, GR-NPs).

Academic Leadership

[edit]

From 2011 to 2019, Rupprechter served as the Speaker/Coordinator of the FWF-funded Special Research Program (SFB) "Functional Oxide Surfaces and Interfaces (FOXSI),[12]" involving 150 researchers in 10 research groups. He directed theTU Wien funded Doctorate school "Catalysis Materials and Technology" with 11 research groups from 2011 to 2014.

Since Oct. 1st, 2023, Prof. Rupprechter holds the position of "Director of Research" of the FWF-funded Cluster of Excellence "Materials for Energy Conversion and Storage (MECS)."[3][2]

Prof. Rupprechter has/had several leadership roles in professional societies such as theAustrian Chemical Society (GÖCH) and the Chemical Physical Society.[13] He is Vicechair of the Austrian Catalysis Society, thus Austrian Representative in the European Federation of Catalysis Societies (EFCATS)[14] and the International Association of Catalysis Societies (IACS).[15] He has been Austrian Representative in variousEuropean COST Actions:[16] CA22123 - European Materials Acceleration Center for Energy (EU-MACE; Management Committee);[17] MP0903 - Nanoalloys as advanced materials: from structure to properties and applications (NANOALLOY; Management Committee);[18] CM0904 - Network for intermetallic compounds as catalysts forsteam reforming of methanol (IMC-SRM; Vice Chair, Management Committee; STSM Coordinator);[19] 540 - Photocatalytic technologies and novel nanosurfaces materials - critical issues (PHONASUM; Management Committee).[20]

Rupprechter has (co-)organized of academic conferences and summer schools, e.g. the annual "International Workshop on Chemistry and Physics of Novel Materials"[21] (with P. Blaha), the EFCATS Summer School "Engineering Materials for Catalysis 2020" (with Albin Pintar and Nataša Novak Tušar: Portorož-Portorose,Slovenia), theFaraday Discussion on "Photoelectron Spectroscopy: New Horizons in Surface Analysis",London,UK (2022), the "GÖCh-Symposium - Physikalische Chemie und Elektrochemie in Österreich 2023"[22] and the upcoming 16th Pannonian International Symposium on Catalysis (Seggau/Styria, Austria; September 1–5, 2024; with C. Rameshan).[23]

Awards and honors

[edit]

Rupprechter has received several awards and honors including:

Editorial Activities

[edit]

Academic Supervision

[edit]

Rupprechter has been involved in academic supervision, having supervised 22 Post-docs and 27 PhD students.

Key Scientific Contributions

[edit]

Examining functioning catalysts at nearatmospheric pressure (NAP) and realistic temperature is crucial to obtain a fundamental understanding, Rupprechter has developed dedicated UHV-compatible high-pressure cells for model catalysts (single crystals, thin films, nanoparticles), enablingsum frequency generation (SFG)laser spectroscopy, polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS), andX-ray photoelectron spectroscopy (NAP-XPS) under reaction conditions. For industrial-grade nanomaterials, corresponding in situ (operando) spectroscopy is carried out byFourier transform infrared spectroscopy (FTIR and DRIFTS),X-ray absorption spectroscopy (XAS), NAP-XPS, andX-ray diffraction (XRD). Significant advances were made in directly imaging the local kinetics of surface reactions by in situ surface (correlative) microscopy, withphotoemission electron microscopy (PEEM), scanning photoelectron microscopy (SPEM) and field emission/ion microscopy (FEM/FIM) applied to metals and metal/oxide interfaces. Most studies were carried out atsynchrotron sources and in lock-step with theory collaborations (DFT and micro-kinetics).

Model Catalysis

[edit]
  • Rupprechter is among the early researchers in ambient pressure surface science, developing and applying UHV-compatible high-pressure (HP) cells for combined in situ surface spectroscopy and kinetics:[11][10] sum frequency generation (SFG) withGábor A. Somorjai, SFG/PM-IRAS with Hans-Joachim Freund,[32] near atmospheric pressure- X-ray photoelectron spectroscopy (NAP-XPS) with V.I. Bukhtiyarov (J. Phys. Chem. C 2003/2004).[33][34] This enabled atmospheric pressure studies of UHV-grown model systems, creating the vital link to technological catalysis. Among several constructed HP cells, one specific design[35] is used by several groups worldwide.
  • First demonstration of SFG spectroscopy on oxide supported Pd nanoparticles, revealing size and pressure (ultra high vacuum-UHV to mbar) effects inCO adsorption.[36] This triggered many follow-up studies, also combined with NAP-XPS. His SFG activities continue till today, including single crystals, thin films, and nanoparticles.[37][38]
  • Combining atmospheric pressure reaction kinetics of the complex1-butene hydrogenation andisomerization on Pd single crystals and Pd/Al2O3 model catalysts withdensity functional theory (DFT) calculations and microkinetic modeling (with A. Genest and N. Rösch), the particle size-dependent selectivity could be rationalized based on the abundance and specific properties of the contributing nanoparticle facets.[39][40]

Model and Applied Catalysis

[edit]
  • Molecular-level operando insights into selective methanol steam reforming on PdZn and PdGa intermetallics (NAP-XPS, PM-IRAS, concentration modulation IR, EXAFS, DFT; with B. Klötzer, D. Ferri, K.M. Neyman). He was able to link reaction selectivity to the catalyst's atomic and electronic (VB) structure, backed by DFT (JPC C 2015). Model and applied studies blended well together.
  • Studies of ZrO2-based reforming catalysts by in situ (synchrotron) NAP-XPS and XAS spectroscopy, employing ultrathin (trilayer) ZrO2 films (Surf. Sci. 2019, JPC C 2015) and nano powders ofZrO2 and ZrO2/CeO2 (Catal. Tod. 2016/2017). Further studies of methane dry reforming demonstrated SMSI effects (J. Phys. Cond. Matt. 2018), Ni surface segregation in bimetallic CuNi/ZrO2, and coke suppression for Ni/ZrO2/CeO2.[10]

Applied Catalysis

[edit]
  • Operando surface spectroscopy (XAS, NAP-XPS, FTIR, XRD) of CO oxidation and PROX on Co3O4 catalysts, exploiting both static and dynamic conditions, revealed a complex reaction network.[10][41] The presumably active (oxygen vacancy) sites were a minority species. Further studies contrasted Co3O4 to Co3O4/CeO2 and CoO (J. Phys.: Cond. Matt. 2022, Chem. Europ. J. 2021, Catal. Tod. 2019).
  • Surface chemistry of Au clusters on ceria-praseodymium mixed oxide supports: Au/Ce4Pr1Ox exhibited the highest activity in water gas shift, with combined experimental and theoretical studies showing that asymmetric O vacancies facilitate H2O dissociation.[42] Using thiolate-protected atomically preciseAu clusters on various supports as truly monodisperse catalysts.[43]
  • Waste-valorized synthesis and application of methanol sensors,[44] self-cleaning paint[45][46][47] and nanowebs for water purification.[48]

In Situ/Operando Surface Microscopy

[edit]

Locally resolved imaging of ongoing surface reactions byphotoemission electron microscopy (PEEM), directly revealing phenomena such as facet-resolved catalytic ignition, multi-frequential oscillations, anisotropic surface oxidation, coexisting multi-states, and long-ranging metal/oxide interface effects (with Y. Suchorski).[10][49][50] This opened a new pathway to investigate catalyst heterogeneity and structure sensitivity,[51] based on a 10-year research effort in developing the concepts of kinetics by imaging and surface structure and particle size libraries. Combining PEEM and DFT/microkinetics (with K.M. Neyman and H. Grönbeck) yielded fundamental insights on interface activity.[49][52] PEEM was combined with SPEM (Scanning Photoelectron Microscopy)[50] and recently extended to XPEEM and LEEM (low energy electron microscopy) in a true in situ correlative microscopy approach.[53][54]

Single Particle Catalysis

[edit]

Fieldelectron microscopy (FEM) is applied to image an ongoing catalytic reaction on the facets of an individual metal nanocrystal in real time, enabling, e.g., to resolve interfacet coupling and its collapse due to surface restructuring.[55][56][57] When the produced water was used as imaging species, the active sites were directly identified by in situfield ion microscopy (FIM). First observation of nano-chaos in a catalytic reaction[58] and direct imaging of La-induced promotor effects.[59][60]

References

[edit]
  1. ^abc"Institute of Materials Chemistry".tuwien.at. Retrieved2023-10-26.
  2. ^abc"Detail".fwf.ac.at. Retrieved2023-10-26.
  3. ^ab"MECS – Cluster of Excellence – MATERIALS FOR ENERGY CONVERSION AND STORAGE". Retrieved2023-10-26.
  4. ^"reposiTUm: High resolution imaging of epitaxially grown catalyst particles of Pt, Ir and Rh".repositum.tuwien.at. Retrieved2024-11-16.
  5. ^"reposiTUm: Struktur und Aktivität von Rh/Al2O3 und Rh/TiO2 Dünnschicht-Modellkatalysatoren".repositum.tuwien.at. Retrieved2024-11-16.
  6. ^Rupprechter, G.; Seeber, G.; Hayek, K.; Hofmeister, H. (1994-11-16)."Epitaxial noble metal particles upon oxidation and reduction. A model system for supported metal catalysts".Physica Status Solidi A (in German).146 (1):449–459.Bibcode:1994PSSAR.146..449R.doi:10.1002/pssa.2211460137.
  7. ^Rupprechter, G.; Hayek, K.; Hofmeister, H. (1998-01-25)."Electron Microscopy of Thin-Film Model Catalysts: Activation of Alumina-Supported Rhodium Nanoparticles".Journal of Catalysis.173 (2):409–422.doi:10.1006/jcat.1997.1917.ISSN 0021-9517.
  8. ^Somorjai, Gabor A.; Rupprechter, Günther (February 1998)."The Flexible Surface: Molecular Studies Explain the Extraordinary Diversity of Surface Chemical Properties".Journal of Chemical Education.75 (2): 161.doi:10.1021/ed075p161.ISSN 0021-9584.
  9. ^"Rupprechter Research Group - Model Catalysis and Applied Catalysis".tuwien.at. Retrieved2023-10-26.
  10. ^abcdeRupprechter, Günther (2021-03-10)."Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates".Small.17 (27) e2004289.doi:10.1002/smll.202004289.ISSN 1613-6810.PMC 11475487.PMID 33694320.S2CID 232193710.
  11. ^abRupprechter, Günther (2007-01-01), Gates, Bruce C.; Knözinger, Helmut (eds.),Sum Frequency Generation and Polarization–Modulation Infrared Reflection Absorption Spectroscopy of Functioning Model Catalysts from Ultrahigh Vacuum to Ambient Pressure, Advances in Catalysis, vol. 51, Academic Press, pp. 133–263,doi:10.1016/S0360-0564(06)51004-1,ISBN 978-0-12-373897-4, retrieved2023-10-26
  12. ^"Overview".foxsi.tuwien.ac.at. Retrieved2023-10-26.
  13. ^"Chemisch-Physikalische-Gesellschaft".cpg.univie.ac.at (in German). Retrieved2023-10-26.
  14. ^"EFCATS - European Federation of Catalysis Societies".efcats.org. Retrieved2023-10-28.
  15. ^"Home Page - IACS - The International Association of Catalysis Societies".iacs-catalysis.org. Retrieved2023-10-28.
  16. ^"COST | European Cooperation in Science and Technology".COST. Retrieved2023-11-02.
  17. ^"Action CA22123".COST. Retrieved2023-11-02.
  18. ^"Action MP0903".COST. Retrieved2023-11-02.
  19. ^"Action CM0904".COST. Retrieved2023-11-02.
  20. ^"Action 540".COST. Retrieved2023-11-02.
  21. ^"37th Workshop on Chemistry and Physics of Novel Materials | TU Wien".tuwien.at. Retrieved2023-10-28.
  22. ^"GÖCH-Symposium | TU Wien".tuwien.at. Retrieved2023-10-28.
  23. ^"16th Pannonian International Symposium on Catalysis | TU Wien".tuwien.at. Retrieved2023-10-29.
  24. ^"Jochen Block-Preis".gecats.org. Retrieved2023-10-26.
  25. ^"Günther Rupprechter".oeaw.ac.at. Retrieved2023-10-26.
  26. ^"Members - European Academy of Sciences". 2022-04-13. Retrieved2023-12-29.
  27. ^"Topics in Catalysis".Springer. Retrieved2023-10-26.
  28. ^Rupprechter, Günther; Dohnálek, Zdenek; Volpe, Anthony F. (2023-09-01)."Preface to "From Coadsorption and Catalysis at Solid Surfaces to Liquid–Solid Interfaces in Theory and Experiment, Published in Honor of Professor Robert K. Grasselli, Irsee IX Symposium Kloster Irsee, Germany 16–19 June 2022 (Irsee IX)"".Topics in Catalysis.66 (15):1071–1072.doi:10.1007/s11244-023-01858-9.ISSN 1572-9028.S2CID 260911069.
  29. ^"Catalysts".mdpi.com. Retrieved2023-10-27.
  30. ^Diebold, Ulrike; Rupprechter, Günther (2019-03-01)."Preface: Surface Science of functional oxides".Surface Science.681: A1.Bibcode:2019SurSc.681A...1D.doi:10.1016/j.susc.2018.11.017.ISSN 0039-6028.S2CID 104297723.
  31. ^Rupprechter, Günther; Gruber, Hans L. (2007-09-01). "Konrad Hayek Festschrift in Topics in Catalysis".Topics in Catalysis.46 (1):1–2.doi:10.1007/s11244-007-0308-6.ISSN 1572-9028.S2CID 96873641.
  32. ^"Freund, Hans-Joachim".mpg.de. Retrieved2023-10-26.
  33. ^Kaichev, Vasiliy V.; Prosvirin, Igor P.; Bukhtiyarov, Valerii I.; Unterhalt, Holger; Rupprechter, Günther; Freund, Hans-Joachim (2003-04-01)."High-Pressure Studies of CO Adsorption on Pd(111) by X-ray Photoelectron Spectroscopy and Sum-Frequency Generation".The Journal of Physical Chemistry B.107 (15):3522–3527.doi:10.1021/jp021992t.ISSN 1520-6106.
  34. ^Morkel, M.; Kaichev, V. V.; Rupprechter, G.; Freund, H.-J.; Prosvirin, I. P.; Bukhtiyarov, V. I. (2004-08-01)."Methanol Dehydrogenation and Formation of Carbonaceous Overlayers on Pd(111) Studied by High-Pressure SFG and XPS Spectroscopy".The Journal of Physical Chemistry B.108 (34):12955–12961.doi:10.1021/jp048149a.ISSN 1520-6106.
  35. ^Rupprechter, G.; Dellwig, T.; Unterhalt, H.; Freund, H.-J. (2001-01-01). "CO adsorption on Ni(100) and Pt(111) studied by infrared–visible sum frequency generation spectroscopy: design and application of an SFG-compatible UHV–high-pressure reaction cell".Topics in Catalysis.15 (1):19–26.doi:10.1023/A:1009063611629.ISSN 1572-9028.S2CID 56468057.
  36. ^Dellwig, T.; Rupprechter, G.; Unterhalt, H.; Freund, H.-J. (2000-07-24)."Bridging the Pressure and Materials Gaps: High Pressure Sum Frequency Generation Study on Supported Pd Nanoparticles".Physical Review Letters.85 (4):776–779.Bibcode:2000PhRvL..85..776D.doi:10.1103/PhysRevLett.85.776.PMID 10991396.
  37. ^Pramhaas, Verena; Roiaz, Matteo; Bosio, Noemi; Corva, Manuel; Rameshan, Christoph; Vesselli, Erik; Grönbeck, Henrik; Rupprechter, Günther (2021-01-01)."Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO 2 Model Catalysts".ACS Catalysis.11 (1):208–214.doi:10.1021/acscatal.0c03974.ISSN 2155-5435.PMC 7783867.PMID 33425478.
  38. ^Pramhaas, Verena; Unterhalt, Holger; Freund, Hans-Joachim; Rupprechter, Günther (2023-05-02)."Polarization-Dependent Sum-Frequency-Generation Spectroscopy for In Situ Tracking of Nanoparticle Morphology".Angewandte Chemie International Edition.62 (19) e202300230.doi:10.1002/anie.202300230.ISSN 1433-7851.PMC 10947018.PMID 36883879.S2CID 257404427.
  39. ^Markova, Velina K.; Philbin, John P.; Zhao, Weina; Genest, Alexander; Silvestre-Albero, Joaquín; Rupprechter, Günther; Rösch, Notker (2018-07-06)."Catalytic Transformations of 1-Butene over Palladium. A Combined Experimental and Theoretical Study".ACS Catalysis.8 (7):5675–5685.doi:10.1021/acscatal.8b01013.ISSN 2155-5435.
  40. ^Genest, Alexander; Silvestre-Albero, Joaquín; Li, Wen-Qing; Rösch, Notker; Rupprechter, Günther (2021-10-20)."The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts".Nature Communications.12 (1): 6098.Bibcode:2021NatCo..12.6098G.doi:10.1038/s41467-021-26411-8.ISSN 2041-1723.PMC 8528898.PMID 34671045.
  41. ^Lukashuk, Liliana; Yigit, Nevzat; Rameshan, Raffael; Kolar, Elisabeth; Teschner, Detre; Hävecker, Michael; Knop-Gericke, Axel; Schlögl, Robert; Föttinger, Karin; Rupprechter, Günther (2018-09-07)."Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD".ACS Catalysis.8 (9):8630–8641.doi:10.1021/acscatal.8b01237.ISSN 2155-5435.PMC 6135594.PMID 30221030.
  42. ^Shi, Junjie; Li, Hailian; Genest, Alexander; Zhao, Weixuan; Qi, Pengfei; Wang, Tao; Rupprechter, Günther (2022-02-01)."High-performance water gas shift induced by asymmetric oxygen vacancies: Gold clusters supported by ceria-praseodymia mixed oxides".Applied Catalysis B: Environmental.301 120789.Bibcode:2022AppCB.30120789S.doi:10.1016/j.apcatb.2021.120789.ISSN 0926-3373.S2CID 243649620.
  43. ^Pollitt, Stephan; Truttmann, Vera; Haunold, Thomas; Garcia, Clara; Olszewski, Wojciech; Llorca, Jordi; Barrabés, Noelia; Rupprechter, Günther (2020-06-05)."The Dynamic Structure of Au 38 (SR) 24 Nanoclusters Supported on CeO 2 upon Pretreatment and CO Oxidation".ACS Catalysis.10 (11):6144–6148.doi:10.1021/acscatal.0c01621.ISSN 2155-5435.PMC 7295362.PMID 32551181.
  44. ^Maqbool, Qaisar; Yigit, Nevzat; Stöger-Pollach, Michael; Ruello, Maria Letizia; Tittarelli, Francesca; Rupprechter, Günther (2023-02-06)."Operando monitoring of a room temperature nanocomposite methanol sensor".Catalysis Science & Technology.13 (3):624–636.doi:10.1039/D2CY01395A.ISSN 2044-4761.PMC 9900598.PMID 36760342.
  45. ^Graham-Shaw, Kate (2024-07-01)."This Paint Could Clean Both Itself and the Air".Scientific American. Retrieved2024-06-27.
  46. ^"A self-cleaning wall paint".tuwien.at. 2024-03-25. Retrieved2024-05-19.
  47. ^"The self-cleaning wall paint".chemeurope.com. Retrieved2024-05-19.
  48. ^"Nanofibers rid water of hazardous dyes".tuwien.at. 2024-04-24. Retrieved2024-05-19.
  49. ^abSuchorski, Yuri; Kozlov, Sergey M.; Bespalov, Ivan; Datler, Martin; Vogel, Diana; Budinska, Zuzana; Neyman, Konstantin M.; Rupprechter, Günther (2018-05-14)."The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation".Nature Materials.17 (6):519–522.Bibcode:2018NatMa..17..519S.doi:10.1038/s41563-018-0080-y.ISSN 1476-4660.PMID 29760509.S2CID 21725176.
  50. ^abWinkler, P.; Zeininger, J.; Suchorski, Y.; Stöger-Pollach, M.; Zeller, P.; Amati, M.; Gregoratti, L.; Rupprechter, G. (2021-01-04)."How the anisotropy of surface oxide formation influences the transient activity of a surface reaction".Nature Communications.12 (1): 69.Bibcode:2021NatCo..12...69W.doi:10.1038/s41467-020-20377-9.ISSN 2041-1723.PMC 7782819.PMID 33398022.
  51. ^Auf chemischen Wellen zu Katalysatoren der Zukunft, 19 February 2018, retrieved2023-11-03
  52. ^Suchorski, Yuri; Datler, Martin; Bespalov, Ivan; Zeininger, Johannes; Stöger-Pollach, Michael; Bernardi, Johannes; Grönbeck, Henrik; Rupprechter, Günther (2018-02-09)."Visualizing catalyst heterogeneity by a multifrequential oscillating reaction".Nature Communications.9 (1): 600.Bibcode:2018NatCo...9..600S.doi:10.1038/s41467-018-03007-3.ISSN 2041-1723.PMC 5807506.PMID 29426883.
  53. ^Zeininger, Johannes; Winkler, Philipp; Raab, Maximilian; Suchorski, Yuri; Prieto, Mauricio J.; Tănase, Liviu C.; de Souza Caldas, Lucas; Tiwari, Aarti; Schmidt, Thomas; Stöger-Pollach, Michael; Steiger-Thirsfeld, Andreas; Roldan Cuenya, Beatriz; Rupprechter, Günther (2022-10-07)."Pattern Formation in Catalytic H 2 Oxidation on Rh: Zooming in by Correlative Microscopy".ACS Catalysis.12 (19):11974–11983.doi:10.1021/acscatal.2c03692.ISSN 2155-5435.PMC 9552168.PMID 36249872.
  54. ^Winkler, Philipp; Raab, Maximilian; Zeininger, Johannes; Rois, Lea M.; Suchorski, Yuri; Stöger-Pollach, Michael; Amati, Matteo; Parmar, Rahul; Gregoratti, Luca; Rupprechter, Günther (2023-06-02)."Imaging Interface and Particle Size Effects by in Situ Correlative Microscopy of a Catalytic Reaction".ACS Catalysis.13 (11):7650–7660.doi:10.1021/acscatal.3c00060.ISSN 2155-5435.PMC 10242684.PMID 37288091.
  55. ^Suchorski, Y.; Zeininger, J.; Buhr, S.; Raab, M.; Stöger-Pollach, M.; Bernardi, J.; Grönbeck, H.; Rupprechter, G. (2021-06-18)."Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis".Science.372 (6548):1314–1318.Bibcode:2021Sci...372.1314S.doi:10.1126/science.abf8107.ISSN 0036-8075.PMID 34016741.S2CID 235074624.
  56. ^Zeininger, Johannes; Suchorski, Yuri; Raab, Maximilian; Buhr, Sebastian; Grönbeck, Henrik; Rupprechter, Günther (2021-08-06)."Single-Particle Catalysis: Revealing Intraparticle Pacemakers in Catalytic H 2 Oxidation on Rh".ACS Catalysis.11 (15):10020–10027.doi:10.1021/acscatal.1c02384.ISSN 2155-5435.PMC 8353627.PMID 34386273.
  57. ^Oszillierende chemische Reaktionen, 19 May 2021, retrieved2023-11-03
  58. ^Raab, Maximilian; Zeininger, Johannes; Suchorski, Yuri; Tokuda, Keita; Rupprechter, Günther (2023-02-10)."Emergence of chaos in a compartmentalized catalytic reaction nanosystem".Nature Communications.14 (1): 736.Bibcode:2023NatCo..14..736R.doi:10.1038/s41467-023-36434-y.ISSN 2041-1723.PMC 9911747.PMID 36759520.
  59. ^Raab, Maximilian; Zeininger, Johannes; Suchorski, Yuri; Genest, Alexander; Weigl, Carla; Rupprechter, Günther (2023-11-08)."Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle".Nature Communications.14 (1): 7186.Bibcode:2023NatCo..14.7186R.doi:10.1038/s41467-023-43026-3.ISSN 2041-1723.PMC 10632447.PMID 37938552.
  60. ^Rupprechter, Günther (2024-03-22)."A milder reaction to feed the world".Science.383 (6689): 1295.doi:10.1126/science.ado4095.ISSN 0036-8075.PMID 38513044.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Günther_Rupprechter&oldid=1313931804"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp