Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fundamental theorem of linear programming

From Wikipedia, the free encyclopedia
Extremes of a linear function over a convex polygonal region occur at the region's corners

Inmathematical optimization, thefundamental theorem oflinear programming states, in aweak formulation, that themaxima and minima of alinear function over aconvex polygonal region occur at the region's corners. Further, if an extreme value occurs at two corners, then it must also occur everywhere on theline segment between them.

Statement

[edit]

Consider the optimization problem

mincTx subject to xP{\displaystyle \min c^{T}x{\text{ subject to }}x\in P}

WhereP={xRn:Axb}{\displaystyle P=\{x\in \mathbb {R} ^{n}:Ax\leq b\}}. IfP{\displaystyle P} is a bounded polyhedron (and thus a polytope) andx{\displaystyle x^{\ast }} is an optimal solution to the problem, thenx{\displaystyle x^{\ast }} is either anextreme point (vertex) ofP{\displaystyle P}, or lies on a faceFP{\displaystyle F\subset P} of optimal solutions.

Proof

[edit]

Suppose, for the sake of contradiction, thatxint(P){\displaystyle x^{\ast }\in \mathrm {int} (P)}. Then there exists someϵ>0{\displaystyle \epsilon >0} such that the ball of radiusϵ{\displaystyle \epsilon } centered atx{\displaystyle x^{\ast }} is contained inP{\displaystyle P}, that isBϵ(x)P{\displaystyle B_{\epsilon }(x^{\ast })\subset P}. Therefore,

xϵ2c||c||P{\displaystyle x^{\ast }-{\frac {\epsilon }{2}}{\frac {c}{||c||}}\in P} and
cT(xϵ2c||c||)=cTxϵ2cTc||c||=cTxϵ2||c||<cTx.{\displaystyle c^{T}\left(x^{\ast }-{\frac {\epsilon }{2}}{\frac {c}{||c||}}\right)=c^{T}x^{\ast }-{\frac {\epsilon }{2}}{\frac {c^{T}c}{||c||}}=c^{T}x^{\ast }-{\frac {\epsilon }{2}}||c||<c^{T}x^{\ast }.}

Hencex{\displaystyle x^{\ast }} is not an optimal solution, a contradiction. Therefore,x{\displaystyle x^{\ast }} must live on the boundary ofP{\displaystyle P}. Ifx{\displaystyle x^{\ast }} is not a vertex itself, it must be theconvex combination of vertices ofP{\displaystyle P}, sayx1,...,xt{\displaystyle x_{1},...,x_{t}}. Thenx=i=1tλixi{\displaystyle x^{\ast }=\sum _{i=1}^{t}\lambda _{i}x_{i}} withλi0{\displaystyle \lambda _{i}\geq 0} andi=1tλi=1{\displaystyle \sum _{i=1}^{t}\lambda _{i}=1}. Observe that

0=cT((i=1tλixi)x)=cT(i=1tλi(xix))=i=1tλi(cTxicTx).{\displaystyle 0=c^{T}\left(\left(\sum _{i=1}^{t}\lambda _{i}x_{i}\right)-x^{\ast }\right)=c^{T}\left(\sum _{i=1}^{t}\lambda _{i}(x_{i}-x^{\ast })\right)=\sum _{i=1}^{t}\lambda _{i}(c^{T}x_{i}-c^{T}x^{\ast }).}

Sincex{\displaystyle x^{\ast }} is an optimal solution, all terms in the sum are nonnegative. Since the sum is equal to zero, we must have that each individual term is equal to zero. Hence,cTx=cTxi{\displaystyle c^{T}x^{\ast }=c^{T}x_{i}} for eachxi{\displaystyle x_{i}}, so everyxi{\displaystyle x_{i}} is also optimal, and therefore all points on the face whose vertices arex1,...,xt{\displaystyle x_{1},...,x_{t}}, are optimal solutions.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fundamental_theorem_of_linear_programming&oldid=1310308828"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp