Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fubini–Study metric

From Wikipedia, the free encyclopedia
(Redirected fromFubini-Study metric)
Metric on a complex projective space endowed with Hermitian form

Inmathematics, theFubini–Study metric (IPA: /fubini-ʃtuːdi/) is aKähler metric on acomplex projective spaceCPn endowed with aHermitian form. Thismetric was originally described in 1904 and 1905 byGuido Fubini andEduard Study.[1][2]

AHermitian form in (the vector space)Cn+1 defines aunitary subgroup U(n+1) in GL(n+1,C). A Fubini–Study metric is determined up tohomothety (overall scaling) by invariance under such a U(n+1) action; thus it ishomogeneous. Equipped with a Fubini–Study metric,CPn is asymmetric space. The particular normalization on the metric depends on the application. InRiemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the(2n+1)-sphere. Inalgebraic geometry, one uses a normalization makingCPn aHodge manifold.

Construction

[edit]

The Fubini–Study metric arises naturally in thequotient space construction ofcomplex projective space.

Specifically, one may defineCPn to be the space consisting of all complex lines inCn+1, i.e., the quotient ofCn+1\{0} by theequivalence relation relating all complex multiples of each point together. This agrees with the quotient by the diagonalgroup action of the multiplicative groupC* = C \ {0}:

CPn={Z=[Z0,Z1,,Zn]Cn+1{0}}/{ZcZ,cC}.{\displaystyle \mathbf {CP} ^{n}=\left\{\mathbf {Z} =[Z_{0},Z_{1},\ldots ,Z_{n}]\in {\mathbf {C} }^{n+1}\setminus \{0\}\right\}{\big /}\{\mathbf {Z} \sim c\mathbf {Z} ,c\in \mathbf {C} ^{*}\}.}

This quotient realizesCn+1\{0} as a complexline bundle over the base spaceCPn. (In fact this is the so-calledtautological bundle overCPn.) A point ofCPn is thus identified with an equivalence class of (n+1)-tuples [Z0,...,Zn] modulo nonzero complex rescaling; theZi are calledhomogeneous coordinates of the point.

Furthermore, one may realize this quotient mapping in two steps: since multiplication by a nonzero complex scalarz = Re can be uniquely thought of as the composition of a dilation by the modulusR followed by a counterclockwise rotation about the origin by an angleθ{\displaystyle \theta }, the quotient mappingCn+1\{0} → CPn splits into two pieces,

Cn+1{0}(a)S2n+1(b)CPn{\displaystyle \mathbf {C} ^{n+1}\setminus \{0\}\mathrel {\stackrel {(a)}{\longrightarrow }} S^{2n+1}\mathrel {\stackrel {(b)}{\longrightarrow }} \mathbf {CP} ^{n}}

where step (a) is a quotient by the dilationZ ~ RZ forR ∈ R+, the multiplicative group ofpositive real numbers, and step (b) is a quotient by the rotationsZ ~ eZ.

The result of the quotient in (a) is the real hypersphereS2n+1 defined by the equation |Z|2 = |Z0|2 + ... + |Zn|2 = 1. The quotient in (b) realizesCPn = S2n+1/S1, whereS1 represents the group of rotations. This quotient is realized explicitly by the famousHopf fibrationS1 → S2n+1 → CPn, the fibers of which are among thegreat circles ofS2n+1{\displaystyle S^{2n+1}}.

As a metric quotient

[edit]

When a quotient is taken of aRiemannian manifold (ormetric space in general), care must be taken to ensure that the quotient space is endowed with ametric that is well-defined. For instance, if a groupG acts on a Riemannian manifold (X,g), then in order for theorbit spaceX/G to possess an induced metric,g{\displaystyle g} must be constant alongG-orbits in the sense that for any elementh ∈ G and pair of vector fieldsX,Y{\displaystyle X,Y} we must haveg(Xh,Yh) = g(X,Y).

The standardHermitian metric onCn+1 is given in the standard basis by

ds2=dZdZ¯=dZ0dZ¯0++dZndZ¯n{\displaystyle ds^{2}=d\mathbf {Z} \otimes d{\bar {\mathbf {Z} }}=dZ_{0}\otimes d{\bar {Z}}_{0}+\cdots +dZ_{n}\otimes d{\bar {Z}}_{n}}

whose realification is the standardEuclidean metric onR2n+2. This metric isnot invariant under the diagonal action ofC*, so we are unable to directly push it down toCPn in the quotient. However, this metricis invariant under the diagonal action ofS1 = U(1), the group of rotations. Therefore, step (b) in the above construction is possible once step (a) is accomplished.

TheFubini–Study metric is the metric induced on the quotientCPn = S2n+1/S1, whereS2n+1{\displaystyle S^{2n+1}} carries the so-called "round metric" endowed upon it byrestriction of the standard Euclidean metric to the unit hypersphere.

In local affine coordinates

[edit]

Corresponding to a point inCPn with homogeneous coordinates[Z0::Zn]{\displaystyle [Z_{0}:\dots :Z_{n}]}, there is a unique set ofn coordinates(z1,,zn){\displaystyle (z_{1},\dots ,z_{n})} such that

[Z0::Zn][1,z1,,zn],{\displaystyle [Z_{0}:\dots :Z_{n}]\sim [1,z_{1},\dots ,z_{n}],}

providedZ00{\displaystyle Z_{0}\neq 0}; specifically,zj=Zj/Z0{\displaystyle z_{j}=Z_{j}/Z_{0}}. The(z1,,zn){\displaystyle (z_{1},\dots ,z_{n})} form anaffine coordinate system forCPn in the coordinate patchU0={Z00}{\displaystyle U_{0}=\{Z_{0}\neq 0\}}. One can develop an affine coordinate system in any of the coordinate patchesUi={Zi0}{\displaystyle U_{i}=\{Z_{i}\neq 0\}} by dividing instead byZi{\displaystyle Z_{i}} in the obvious manner. Then+1 coordinate patchesUi{\displaystyle U_{i}} coverCPn, and it is possible to give the metric explicitly in terms of the affine coordinates(z1,,zn){\displaystyle (z_{1},\dots ,z_{n})} onUi{\displaystyle U_{i}}. The coordinate derivatives define a frame{1,,n}{\displaystyle \{\partial _{1},\ldots ,\partial _{n}\}} of the holomorphic tangent bundle ofCPn, in terms of which the Fubini–Study metric has Hermitian components

gij¯=h(i,¯j)=(1+|z|l2)δij¯z¯izj(1+|z|l2)2.{\displaystyle g_{i{\bar {j}}}=h(\partial _{i},{\bar {\partial }}_{j})={\frac {\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)\delta _{i{\bar {j}}}-{\bar {z}}_{i}z_{j}}{\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)^{2}}}.}

where |z|2 = |z1|2 + ... + |zn|2. That is, theHermitian matrix of the Fubini–Study metric in this frame is

[gij¯]=1(1+|z|l2)2[1+|z|2|z1|2z¯1z2z¯1znz¯2z11+|z|2|z2|2z¯2znz¯nz1z¯nz21+|z|2|zn|2]{\displaystyle {\bigl [}g_{i{\bar {j}}}{\bigr ]}={\frac {1}{\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)^{2}}}\left[{\begin{array}{cccc}1+|\mathbf {z} |^{2}-|z_{1}|^{2}&-{\bar {z}}_{1}z_{2}&\cdots &-{\bar {z}}_{1}z_{n}\\-{\bar {z}}_{2}z_{1}&1+|\mathbf {z} |^{2}-|z_{2}|^{2}&\cdots &-{\bar {z}}_{2}z_{n}\\\vdots &\vdots &\ddots &\vdots \\-{\bar {z}}_{n}z_{1}&-{\bar {z}}_{n}z_{2}&\cdots &1+|\mathbf {z} |^{2}-|z_{n}|^{2}\end{array}}\right]}

Note that each matrix element is unitary-invariant: the diagonal actionzeiθz{\displaystyle \mathbf {z} \mapsto e^{i\theta }\mathbf {z} } will leave this matrix unchanged.

Accordingly, the line element is given by

ds2=gij¯dzidz¯j=(1+|z|l2)|dz|2(z¯dz)(zdz¯)(1+|z|l2)2=(1+ziz¯i)dzjdz¯jz¯jzidzjdz¯i(1+ziz¯i)2.{\displaystyle {\begin{aligned}ds^{2}&=g_{i{\bar {j}}}\,dz^{i}\,d{\bar {z}}^{j}\\[4pt]&={\frac {\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)|d\mathbf {z} |^{2}-({\bar {\mathbf {z} }}\cdot d\mathbf {z} )(\mathbf {z} \cdot d{\bar {\mathbf {z} }})}{\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)^{2}}}\\[4pt]&={\frac {(1+z_{i}{\bar {z}}^{i})\,dz_{j}\,d{\bar {z}}^{j}-{\bar {z}}^{j}z_{i}\,dz_{j}\,d{\bar {z}}^{i}}{\left(1+z_{i}{\bar {z}}^{i}\right)^{2}}}.\end{aligned}}}

In this last expression, thesummation convention is used to sum over Latin indicesi,j that range from 1 to n.

The metric can be derived from the followingKähler potential:[3]

K=ln(1+ziz¯i)=ln(1+δij¯ziz¯j){\displaystyle K=\ln(1+z_{i}{\bar {z}}^{i})=\ln(1+\delta _{i{\bar {j}}}z^{i}{\bar {z}}^{j})}

as

gij¯=Kij¯=2ziz¯jK{\displaystyle g_{i{\bar {j}}}=K_{i{\bar {j}}}={\frac {\partial ^{2}}{\partial z^{i}\,\partial {\bar {z}}^{j}}}K}

Using homogeneous coordinates

[edit]

An expression is also possible in the notation ofhomogeneous coordinates, commonly used to describeprojective varieties ofalgebraic geometry:Z = [Z0:...:Zn]. Formally, subject to suitably interpreting the expressions involved, one has

ds2=|Z|2|dZ|2(Z¯dZ)(ZdZ¯)|Z|4=ZαZ¯αdZβdZ¯βZ¯αZβdZαdZ¯β(ZαZ¯α)2=2Z[αdZβ]Z¯[αdZ¯β](ZαZ¯α)2.{\displaystyle {\begin{aligned}ds^{2}&={\frac {|\mathbf {Z} |^{2}|d\mathbf {Z} |^{2}-({\bar {\mathbf {Z} }}\cdot d\mathbf {Z} )(\mathbf {Z} \cdot d{\bar {\mathbf {Z} }})}{|\mathbf {Z} |^{4}}}\\&={\frac {Z_{\alpha }{\bar {Z}}^{\alpha }dZ_{\beta }d{\bar {Z}}^{\beta }-{\bar {Z}}^{\alpha }Z_{\beta }dZ_{\alpha }d{\bar {Z}}^{\beta }}{\left(Z_{\alpha }{\bar {Z}}^{\alpha }\right)^{2}}}\\&={\frac {2Z_{[\alpha }\,dZ_{\beta ]}{\bar {Z}}^{[\alpha }\,{\overline {dZ}}^{\beta ]}}{\left(Z_{\alpha }{\bar {Z}}^{\alpha }\right)^{2}}}.\end{aligned}}}

Here the summation convention is used to sum over Greek indices α β ranging from 0 ton, and in the last equality the standard notation for the skew part of a tensor is used:

Z[αWβ]=12(ZαWβZβWα).{\displaystyle Z_{[\alpha }W_{\beta ]}={\tfrac {1}{2}}\left(Z_{\alpha }W_{\beta }-Z_{\beta }W_{\alpha }\right).}

Now, this expression for ds2 apparently defines a tensor on the total space of the tautological bundleCn+1\{0}. It is to be understood properly as a tensor onCPn by pulling it back along a holomorphic section σ of the tautological bundle ofCPn. It remains then to verify that the value of the pullback is independent of the choice of section: this can be done by a direct calculation.

TheKähler form of this metric is

ω=i2¯log|Z|2{\displaystyle \omega ={\frac {i}{2}}\partial {\bar {\partial }}\log |\mathbf {Z} |^{2}}

where the,¯{\displaystyle \partial ,{\bar {\partial }}} are theDolbeault operators. The pullback of this is clearly independent of the choice of holomorphic section. The quantity log|Z|2 is theKähler potential (sometimes called the Kähler scalar) ofCPn.

In bra-ket coordinate notation

[edit]

Inquantum mechanics, the Fubini–Study metric is also known as theBures metric.[4] However, the Bures metric is typically defined in the notation ofmixed states, whereas the exposition below is written in terms of apure state. The real part of the metric is (a quarter of) theFisher information metric.[4]

The Fubini–Study metric may be written using thebra–ket notation commonly used inquantum mechanics. To explicitly equate this notation to the homogeneous coordinates given above, let

|ψ=k=0nZk|ek=[Z0:Z1::Zn]{\displaystyle \vert \psi \rangle =\sum _{k=0}^{n}Z_{k}\vert e_{k}\rangle =[Z_{0}:Z_{1}:\ldots :Z_{n}]}

where{|ek}{\displaystyle \{\vert e_{k}\rangle \}} is a set oforthonormalbasis vectors forHilbert space, theZk{\displaystyle Z_{k}} are complex numbers, andZα=[Z0:Z1::Zn]{\displaystyle Z_{\alpha }=[Z_{0}:Z_{1}:\ldots :Z_{n}]} is the standard notation for a point in theprojective spaceCPn inhomogeneous coordinates. Then, given two points|ψ=Zα{\displaystyle \vert \psi \rangle =Z_{\alpha }} and|φ=Wα{\displaystyle \vert \varphi \rangle =W_{\alpha }} in the space, the distance (length of a geodesic) between them is

γ(ψ,φ)=arccosψ|φφ|ψψ|ψφ|φ{\displaystyle \gamma (\psi ,\varphi )=\arccos {\sqrt {\frac {\langle \psi \vert \varphi \rangle \;\langle \varphi \vert \psi \rangle }{\langle \psi \vert \psi \rangle \;\langle \varphi \vert \varphi \rangle }}}}

or, equivalently, in projective variety notation,

γ(ψ,φ)=γ(Z,W)=arccosZαW¯αWβZ¯βZαZ¯αWβW¯β.{\displaystyle \gamma (\psi ,\varphi )=\gamma (Z,W)=\arccos {\sqrt {\frac {Z_{\alpha }{\bar {W}}^{\alpha }\;W_{\beta }{\bar {Z}}^{\beta }}{Z_{\alpha }{\bar {Z}}^{\alpha }\;W_{\beta }{\bar {W}}^{\beta }}}}.}

Here,Z¯α{\displaystyle {\bar {Z}}^{\alpha }} is thecomplex conjugate ofZα{\displaystyle Z_{\alpha }}. The appearance ofψ|ψ{\displaystyle \langle \psi \vert \psi \rangle } in the denominator is a reminder that|ψ{\displaystyle \vert \psi \rangle } and likewise|φ{\displaystyle \vert \varphi \rangle } were not normalized to unit length; thus the normalization is made explicit here. In Hilbert space, the metric can be interpreted as the angle between two vectors; thus it is occasionally called thequantum angle. The angle is real-valued, and runs from 0 toπ/2{\displaystyle \pi /2}.

The infinitesimal form of this metric may be quickly obtained by takingφ=ψ+δψ{\displaystyle \varphi =\psi +\delta \psi }, or equivalently,Wα=Zα+dZα{\displaystyle W_{\alpha }=Z_{\alpha }+dZ_{\alpha }} to obtain

ds2=δψ|δψψ|ψδψ|ψψ|δψψ|ψ2.{\displaystyle ds^{2}={\frac {\langle \delta \psi \vert \delta \psi \rangle }{\langle \psi \vert \psi \rangle }}-{\frac {\langle \delta \psi \vert \psi \rangle \;\langle \psi \vert \delta \psi \rangle }{{\langle \psi \vert \psi \rangle }^{2}}}.}

In the context ofquantum mechanics,CP1 is called theBloch sphere; the Fubini–Study metric is the naturalmetric for the geometrization of quantum mechanics. Much of the peculiar behaviour of quantum mechanics, includingquantum entanglement and theBerry phase effect, can be attributed to the peculiarities of the Fubini–Study metric.

Then = 1 case

[edit]

Whenn = 1, there is a diffeomorphismS2CP1{\displaystyle S^{2}\cong \mathbf {CP} ^{1}} given bystereographic projection. This leads to the "special" Hopf fibrationS1 → S3 → S2. When the Fubini–Study metric is written in coordinates onCP1, its restriction to the real tangent bundle yields an expression of the ordinary "round metric" of radius 1/2 (andGaussian curvature 4) onS2.

Namely, ifz = x + iy is the standard affine coordinate chart on theRiemann sphereCP1 andx = r cos θ,y = r sin θ are polar coordinates onC, then a routine computation shows

ds2=Re(dzdz¯)(1+|z|l2)2=dx2+dy2(1+r2)2=14(dφ2+sin2φdθ2)=14dsus2{\displaystyle ds^{2}={\frac {\operatorname {Re} (dz\otimes d{\bar {z}})}{\left(1+|\mathbf {z} |{\vphantom {l}}^{2}\right)^{2}}}={\frac {dx^{2}+dy^{2}}{\left(1+r^{2}\right)^{2}}}={\tfrac {1}{4}}(d\varphi ^{2}+\sin ^{2}\varphi \,d\theta ^{2})={\tfrac {1}{4}}\,ds_{us}^{2}}

wheredsus2{\displaystyle ds_{us}^{2}} is the round metric on the unit 2-sphere. Here φ, θ are "mathematician'sspherical coordinates" onS2 coming from the stereographic projectionr tan(φ/2) = 1, tan θ = y/x. (Many physics references interchange the roles of φ and θ.)

TheKähler form is

K=i2dzdz¯(1+zz¯)2=dxdy(1+x2+y2)2{\displaystyle K={\frac {i}{2}}{\frac {dz\wedge d{\bar {z}}}{\left(1+z{\bar {z}}\right)^{2}}}={\frac {dx\wedge dy}{\left(1+x^{2}+y^{2}\right)^{2}}}}

Choosing asvierbeinse1=dx/(1+r2){\displaystyle e^{1}=dx/(1+r^{2})} ande2=dy/(1+r2){\displaystyle e^{2}=dy/(1+r^{2})}, the Kähler form simplifies to

K=e1e2{\displaystyle K=e^{1}\wedge e^{2}}

Applying theHodge star to the Kähler form, one obtains

K=1{\displaystyle *K=1}

implying thatK isharmonic.

Then = 2 case

[edit]

The Fubini–Study metric on thecomplex projective planeCP2 has been proposed as agravitational instanton, the gravitational analog of aninstanton.[5][3] The metric, the connection form and the curvature are readily computed, once suitable real 4D coordinates are established. Writing(x,y,z,t){\displaystyle (x,y,z,t)} for real Cartesian coordinates, one then defines polar coordinate one-forms on the4-sphere (thequaternionic projective line) as

rdr=+xdx+ydy+zdz+tdtr2σ1=tdxzdy+ydz+xdtr2σ2=+zdxtdyxdz+ydtr2σ3=ydx+xdytdz+zdt{\displaystyle {\begin{aligned}r\,dr&=+x\,dx+y\,dy+z\,dz+t\,dt\\r^{2}\sigma _{1}&=-t\,dx-z\,dy+y\,dz+x\,dt\\r^{2}\sigma _{2}&=+z\,dx-t\,dy-x\,dz+y\,dt\\r^{2}\sigma _{3}&=-y\,dx+x\,dy-t\,dz+z\,dt\end{aligned}}}

Theσ1,σ2,σ3{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}} are the standard left-invariant one-form coordinate frame on the Lie groupSU(2)=S3{\displaystyle SU(2)=S^{3}}; that is, they obeydσi=2σjσk{\displaystyle d\sigma _{i}=2\sigma _{j}\wedge \sigma _{k}} fori,j,k=1,2,3{\displaystyle i,j,k=1,2,3} and cyclic permutations.

The corresponding local affine coordinates arez1=x+iy{\displaystyle z_{1}=x+iy} andz2=z+it{\displaystyle z_{2}=z+it} then provide

z1z¯1+z2z¯2=r2=x2+y2+z2+t2dz1dz¯1+dz2dz¯2=dr2+r2(σ12+σ22+σ32)z¯1dz1+z¯2dz2=rdr+ir2σ3{\displaystyle {\begin{aligned}z_{1}{\bar {z}}_{1}+z_{2}{\bar {z}}_{2}&=r^{2}=x^{2}+y^{2}+z^{2}+t^{2}\\dz_{1}\,d{\bar {z}}_{1}+dz_{2}\,d{\bar {z}}_{2}&=dr^{\,2}+r^{2}(\sigma _{1}^{\,2}+\sigma _{2}^{\,2}+\sigma _{3}^{\,2})\\{\bar {z}}_{1}\,dz_{1}+{\bar {z}}_{2}\,dz_{2}&=rdr+i\,r^{2}\sigma _{3}\end{aligned}}}

with the usual abbreviations thatdr2=drdr{\displaystyle dr^{\,2}=dr\otimes dr} andσk2=σkσk{\displaystyle \sigma _{k}^{\,2}=\sigma _{k}\otimes \sigma _{k}}.

The line element, starting with the previously given expression, is given by

ds2=dzjdz¯j1+ziz¯iz¯jzidzjdz¯i(1+ziz¯i)2=dr2+r2(σ12+σ22+σ32)1+r2r2dr2+r4σ32(1+r2)2=dr2+r2σ32(1+r2)2+r2(σ12+σ22)1+r2{\displaystyle {\begin{aligned}ds^{2}&={\frac {dz_{j}\,d{\bar {z}}^{j}}{1+z_{i}{\bar {z}}^{i}}}-{\frac {{\bar {z}}^{j}z_{i}\,dz_{j}\,d{\bar {z}}^{i}}{(1+z_{i}{\bar {z}}^{i})^{2}}}\\[5pt]&={\frac {dr^{\,2}+r^{2}(\sigma _{1}^{\,2}+\sigma _{2}^{\,2}+\sigma _{3}^{\,2})}{1+r^{2}}}-{\frac {r^{2}dr^{\,2}+r^{4}\sigma _{3}^{\,2}}{\left(1+r^{2}\right)^{2}}}\\[4pt]&={\frac {dr^{\,2}+r^{2}\sigma _{3}^{\,2}}{\left(1+r^{2}\right)^{2}}}+{\frac {r^{2}\left(\sigma _{1}^{\,2}+\sigma _{2}^{\,2}\right)}{1+r^{2}}}\end{aligned}}}

Thevierbeins can be immediately read off from the last expression:

e0=dr1+r2e3=rσ31+r2e1=rσ11+r2e2=rσ21+r2{\displaystyle {\begin{aligned}e^{0}={\frac {dr}{1+r^{2}}}&&&e^{3}={\frac {r\sigma _{3}}{1+r^{2}}}\\[5pt]e^{1}={\frac {r\sigma _{1}}{\sqrt {1+r^{2}}}}&&&e^{2}={\frac {r\sigma _{2}}{\sqrt {1+r^{2}}}}\end{aligned}}}

That is, in the vierbein coordinate system, using roman-letter subscripts, the metric tensor is Euclidean:

ds2=δabeaeb=e0e0+e1e1+e2e2+e3e3.{\displaystyle ds^{2}=\delta _{ab}e^{a}\otimes e^{b}=e^{0}\otimes e^{0}+e^{1}\otimes e^{1}+e^{2}\otimes e^{2}+e^{3}\otimes e^{3}.}

Given the vierbein, aspin connection can be computed; the Levi-Civita spin connection is the unique connection that istorsion-free and covariantly constant, namely, it is the one-formωba{\displaystyle \omega _{\;\;b}^{a}} that satisfies the torsion-free condition

dea+ωbaeb=0{\displaystyle de^{a}+\omega _{\;\;b}^{a}\wedge e^{b}=0}

and is covariantly constant, which, for spin connections, means that it is antisymmetric in the vierbein indexes:

ωab=ωba{\displaystyle \omega _{ab}=-\omega _{ba}}

The above is readily solved; one obtains

ω10=ω32=e1rω20=ω13=e2rω30=r21re3ω21=1+2r2re3{\displaystyle {\begin{aligned}\omega _{\;\;1}^{0}&=-\omega _{\;\;3}^{2}=-{\frac {e^{1}}{r}}\\\omega _{\;\;2}^{0}&=-\omega _{\;\;1}^{3}=-{\frac {e^{2}}{r}}\\\omega _{\;\;3}^{0}&={\frac {r^{2}-1}{r}}e^{3}\quad \quad \omega _{\;\;2}^{1}={\frac {1+2r^{2}}{r}}e^{3}\\\end{aligned}}}

Thecurvature 2-form is defined as

Rba=dωba+ωcaωbc{\displaystyle R_{\;\,b}^{a}=d\omega _{\;\,b}^{a}+\omega _{\;c}^{a}\wedge \omega _{\;\,b}^{c}}

and is constant:

R01=R23=e0e1e2e3R02=R31=e0e2e3e1R03=4e0e3+2e1e2R12=2e0e3+4e1e2{\displaystyle {\begin{aligned}R_{01}&=-R_{23}=e^{0}\wedge e^{1}-e^{2}\wedge e^{3}\\R_{02}&=-R_{31}=e^{0}\wedge e^{2}-e^{3}\wedge e^{1}\\R_{03}&=4e^{0}\wedge e^{3}+2e^{1}\wedge e^{2}\\R_{12}&=2e^{0}\wedge e^{3}+4e^{1}\wedge e^{2}\end{aligned}}}

TheRicci tensor in vierbein indexes is given by

Ricca=Rbcdaδbd{\displaystyle \operatorname {Ric} _{\;\;c}^{a}=R_{\;\,bcd}^{a}\delta ^{bd}}

where the curvature 2-form was expanded as a four-component tensor:

Rba=12Rbcdaeced{\displaystyle R_{\;\,b}^{a}={\tfrac {1}{2}}R_{\;\,bcd}^{a}e^{c}\wedge e^{d}}

The resultingRicci tensor is constant

Ricab=6δab{\displaystyle \operatorname {Ric} _{ab}=6\delta _{ab}}

so that the resultingEinstein equation

Ricab12δabR+Λδab=0{\displaystyle \operatorname {Ric} _{ab}-{\tfrac {1}{2}}\delta _{ab}R+\Lambda \delta _{ab}=0}

can be solved with thecosmological constantΛ=6{\displaystyle \Lambda =6}.

TheWeyl tensor for Fubini–Study metrics in general is given by

Wabcd=Rabcd2(δacδbdδadδbc){\displaystyle W_{abcd}=R_{abcd}-2\left(\delta _{ac}\delta _{bd}-\delta _{ad}\delta _{bc}\right)}

For then = 2 case, the two-forms

Wab=12Wabcdeced{\displaystyle W_{ab}={\tfrac {1}{2}}W_{abcd}e^{c}\wedge e^{d}}

are self-dual:

W01=W23=e0e1e2e3W02=W31=e0e2e3e1W03=W12=2e0e3+2e1e2{\displaystyle {\begin{aligned}W_{01}&=W_{23}=-e^{0}\wedge e^{1}-e^{2}\wedge e^{3}\\W_{02}&=W_{31}=-e^{0}\wedge e^{2}-e^{3}\wedge e^{1}\\W_{03}&=W_{12}=2e^{0}\wedge e^{3}+2e^{1}\wedge e^{2}\end{aligned}}}

Curvature properties

[edit]

In then = 1 special case, the Fubini–Study metric has constant sectional curvature identically equal to 4, according to the equivalence with the 2-sphere's round metric (which given a radiusR has sectional curvature1/R2{\displaystyle 1/R^{2}}). However, forn > 1, the Fubini–Study metric does not have constant curvature. Its sectional curvature is instead given by the equation[6]

K(σ)=1+3JX,Y2{\displaystyle K(\sigma )=1+3\langle JX,Y\rangle ^{2}}

where{X,Y}TpCPn{\displaystyle \{X,Y\}\in T_{p}\mathbf {CP} ^{n}} is an orthonormal basis of the 2-plane σ, the mappingJ : TCPn → TCPn is thecomplex structure onCPn, and,{\displaystyle \langle \cdot ,\cdot \rangle } is the Fubini–Study metric.

A consequence of this formula is that the sectional curvature satisfies1K(σ)4{\displaystyle 1\leq K(\sigma )\leq 4} for all 2-planesσ{\displaystyle \sigma }. The maximum sectional curvature (4) is attained at aholomorphic 2-plane — one for whichJ(σ) ⊂ σ — while the minimum sectional curvature (1) is attained at a 2-plane for whichJ(σ) is orthogonal to σ. For this reason, the Fubini–Study metric is often said to have "constantholomorphic sectional curvature" equal to 4.

This makesCPn a (non-strict)quarter pinched manifold; a celebrated theorem shows that a strictly quarter-pinchedsimply connectedn-manifold must be homeomorphic to a sphere.

The Fubini–Study metric is also anEinstein metric in that it is proportional to its ownRicci tensor: there exists a constantΛ{\displaystyle \Lambda }; such that for alli,j we have

Ricij=Λgij.{\displaystyle \operatorname {Ric} _{ij}=\Lambda g_{ij}.}

This implies, among other things, that the Fubini–Study metric remains unchanged up to a scalar multiple under theRicci flow. It also makesCPn indispensable to the theory ofgeneral relativity, where it serves as a nontrivial solution to the vacuumEinstein field equations.

Thecosmological constantΛ{\displaystyle \Lambda } forCPn is given in terms of the dimension of the space:

Ricij=2(n+1)gij.{\displaystyle \operatorname {Ric} _{ij}=2(n+1)g_{ij}.}

Product metric

[edit]

The common notions of separability apply for the Fubini–Study metric. More precisely, the metric is separable on the natural product of projective spaces, theSegre embedding. That is, if|ψ{\displaystyle \vert \psi \rangle } is aseparable state, so that it can be written as|ψ=|ψA|ψB{\displaystyle \vert \psi \rangle =\vert \psi _{A}\rangle \otimes \vert \psi _{B}\rangle }, then the metric is the sum of the metric on the subspaces:

ds2=dsA2+dsB2{\displaystyle ds^{2}={ds_{A}}^{2}+{ds_{B}}^{2}}

wheredsA2{\displaystyle {ds_{A}}^{2}} anddsB2{\displaystyle {ds_{B}}^{2}} are the metrics, respectively, on the subspacesA andB.

Connection and curvature

[edit]

The fact that the metric can be derived from the Kähler potential means that theChristoffel symbols and the curvature tensors contain a lot of symmetries, and can be given a particularly simple form:[citation needed] The Christoffel symbols, in the local affine coordinates, are given by

Γjki=gim¯gkm¯zjΓj¯k¯i¯=gi¯mgk¯mz¯j¯{\displaystyle \Gamma _{\;jk}^{i}=g^{i{\bar {m}}}{\frac {\partial g_{k{\bar {m}}}}{\partial z^{j}}}\qquad \Gamma _{\;{\bar {j}}{\bar {k}}}^{\bar {i}}=g^{{\bar {i}}m}{\frac {\partial g_{{\bar {k}}m}}{\partial {\bar {z}}^{\bar {j}}}}}

The Riemann tensor is also particularly simple:

Rij¯kl¯=gim¯Γj¯l¯m¯zk{\displaystyle R_{i{\bar {j}}k{\bar {l}}}=g^{i{\bar {m}}}{\frac {\partial \Gamma _{\;\;{\bar {j}}{\bar {l}}}^{\bar {m}}}{\partial z^{k}}}}

TheRicci tensor is

Ri¯j=Ri¯k¯jk¯=Γi¯k¯k¯zjRij¯=Rikj¯k=Γikkz¯j¯{\displaystyle R_{{\bar {i}}j}=R_{\;{\bar {i}}{\bar {k}}j}^{\bar {k}}=-{\frac {\partial \Gamma _{\;{\bar {i}}{\bar {k}}}^{\bar {k}}}{\partial z^{j}}}\qquad R_{i{\bar {j}}}=R_{\;ik{\bar {j}}}^{k}=-{\frac {\partial \Gamma _{\;ik}^{k}}{\partial {\bar {z}}^{\bar {j}}}}}

See also

[edit]

References

[edit]
  1. ^G. Fubini, "Sulle metriche definite da una forma Hermitiana", (1904)Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti,63 pp. 501–513
  2. ^Study, E. (1905). "Kürzeste Wege im komplexen Gebiet".Mathematische Annalen (in German).60 (3). Springer Science and Business Media LLC:321–378.doi:10.1007/bf01457616.ISSN 0025-5831.S2CID 120961275.
  3. ^abEguchi, Tohru; Gilkey, Peter B.; Hanson, Andrew J. (1980)."Gravitation, gauge theories and differential geometry".Physics Reports.66 (6). Elsevier BV:213–393.Bibcode:1980PhR....66..213E.doi:10.1016/0370-1573(80)90130-1.ISSN 0370-1573.
  4. ^abPaolo Facchi, Ravi Kulkarni, V. I. Man'ko, Giuseppe Marmo, E. C. G. Sudarshan, Franco Ventriglia "Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics" (2010),Physics LettersA 374 pp. 4801.doi:10.1016/j.physleta.2010.10.005
  5. ^Eguchi, Tohru; Freund, Peter G. O. (1976-11-08). "Quantum Gravity and World Topology".Physical Review Letters.37 (19). American Physical Society (APS):1251–1254.Bibcode:1976PhRvL..37.1251E.doi:10.1103/physrevlett.37.1251.ISSN 0031-9007.
  6. ^Sakai, T.Riemannian Geometry, Translations of Mathematical Monographs No. 149 (1995), American Mathematics Society.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fubini–Study_metric&oldid=1334415788"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp