Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Formula for primes

From Wikipedia, the free encyclopedia
Formula whose values are the prime numbers

Innumber theory, aformula for primes is aformula generating theprime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

Formulas based on Wilson's theorem

[edit]

A simple formula is

f(n)=n!mod(n+1)n(n1)+2{\displaystyle f(n)=\left\lfloor {\frac {n!{\bmod {(}}n+1)}{n}}\right\rfloor (n-1)+2}

for positiveintegern{\displaystyle n}, where {\displaystyle \lfloor \ \rfloor } is thefloor function, which rounds down to the nearest integer.ByWilson's theorem,n+1{\displaystyle n+1} is prime if and only ifn!n(modn+1){\displaystyle n!\equiv n\!\!\!{\pmod {n+1}}}. Thus, whenn+1{\displaystyle n+1} is prime, the first factor in the product becomes one, and the formula produces the prime numbern+1{\displaystyle n+1}. But whenn+1{\displaystyle n+1} is not prime, the first factor becomes zero and the formula produces the prime number 2.[1]This formula is not an efficient way to generate prime numbers because evaluatingn!mod(n+1){\displaystyle n!{\bmod {(}}n+1)} requires aboutn1{\displaystyle n-1} multiplications and reductions modulon+1{\displaystyle n+1}.

In 1964, Willans gave the formula

pn=1+i=12n(nj=1i(cos(j1)!+1jπ)2)1/n{\displaystyle p_{n}=1+\sum _{i=1}^{2^{n}}\left\lfloor \left({\frac {n}{\sum _{j=1}^{i}\left\lfloor \left(\cos {\frac {(j-1)!+1}{j}}\pi \right)^{2}\right\rfloor }}\right)^{1/n}\right\rfloor }

for then{\displaystyle n}th prime numberpn{\displaystyle p_{n}}.[2]This formula reduces to[3][4]

pn=1+i=12n[π(i)<n];{\displaystyle p_{n}=1+\sum _{i=1}^{2^{n}}[\pi (i)<n];}

that is, it tautologically definespn{\displaystyle p_{n}} as the smallest integerm{\displaystyle m} for which theprime-counting functionπ(m){\displaystyle \pi (m)} is at leastn{\displaystyle n}. This formula is also not efficient. In addition to the appearance of(j1)!{\displaystyle (j-1)!}, it computespn{\displaystyle p_{n}} by adding uppn{\displaystyle p_{n}} copies of1{\displaystyle 1}; for example,

p5=1+1+1+1+1+1+1+1+1+1+1+0+0++0=11.{\displaystyle p_{5}=1+1+1+1+1+1+1+1+1+1+1+0+0+\dots +0=11.}

The articlesWhat is an Answer? byHerbert Wilf (1982)[5] andFormulas for Primes byUnderwood Dudley (1983)[6] have further discussion about the worthlessness of such formulas.

A shorter formula based on Wilson's theorem was given by J. P. Jones in 1975, usingmod{\displaystyle \mathrm {mod} } as a function:[7]

pn=i=0n2(1˙((j=0i(j˙1)!2 mod j))){\displaystyle p_{n}=\sum _{i=0}^{n^{2}}\left(1\mathop {\dot {-}} \left(\left(\sum _{j=0}^{i}(j\mathop {\dot {-}} 1)!^{2}{\text{ mod }}j\right)\right)\right)}

Here,˙{\displaystyle \mathop {\dot {-}} } is themonus operator, andx mod 0{\displaystyle x{\text{ mod }}0} is defined to bex{\displaystyle x}.

Formula based on a system of Diophantine equations

[edit]

Because the set of primes is acomputably enumerable set, byMatiyasevich's theorem, it can be obtained from a system ofDiophantine equations.Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given numberk + 2 is primeif and only if that system has a solution in nonnegative integers:[8]

α0=wz+h+jq=0{\displaystyle \alpha _{0}=wz+h+j-q=0}
α1=(gk+2g+k+1)(h+j)+hz=0{\displaystyle \alpha _{1}=(gk+2g+k+1)(h+j)+h-z=0}
α2=16(k+1)3(k+2)(n+1)2+1f2=0{\displaystyle \alpha _{2}=16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}=0}
α3=2n+p+q+ze=0{\displaystyle \alpha _{3}=2n+p+q+z-e=0}
α4=e3(e+2)(a+1)2+1o2=0{\displaystyle \alpha _{4}=e^{3}(e+2)(a+1)^{2}+1-o^{2}=0}
α5=(a21)y2+1x2=0{\displaystyle \alpha _{5}=(a^{2}-1)y^{2}+1-x^{2}=0}
α6=16r2y4(a21)+1u2=0{\displaystyle \alpha _{6}=16r^{2}y^{4}(a^{2}-1)+1-u^{2}=0}
α7=n++vy=0{\displaystyle \alpha _{7}=n+\ell +v-y=0}
α8=(a21)2+1m2=0{\displaystyle \alpha _{8}=(a^{2}-1)\ell ^{2}+1-m^{2}=0}
α9=ai+k+1i=0{\displaystyle \alpha _{9}=ai+k+1-\ell -i=0}
α10=((a+u2(u2a))21)(n+4dy)2+1(x+cu)2=0{\displaystyle \alpha _{10}=((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}=0}
α11=p+(an1)+b(2an+2an22n2)m=0{\displaystyle \alpha _{11}=p+\ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m=0}
α12=q+y(ap1)+s(2ap+2ap22p2)x=0{\displaystyle \alpha _{12}=q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x=0}
α13=z+p(ap)+t(2app21)pm=0{\displaystyle \alpha _{13}=z+p\ell (a-p)+t(2ap-p^{2}-1)-pm=0}

The 14 equationsα0,,α13{\displaystyle \alpha _{0},\dots ,\alpha _{13}} can be used to produce a prime-generating polynomial inequality in 26 variables:

(k+2)(1α02α12α132)>0.{\displaystyle (k+2)(1-\alpha _{0}^{2}-\alpha _{1}^{2}-\cdots -\alpha _{13}^{2})>0.}

That is,

(k+2)(1[wz+h+jq]2[(gk+2g+k+1)(h+j)+hz]2[16(k+1)3(k+2)(n+1)2+1f2]2[2n+p+q+ze]2[e3(e+2)(a+1)2+1o2]2[(a21)y2+1x2]2[16r2y4(a21)+1u2]2[n++vy]2[(a21)2+1m2]2[ai+k+1i]2[((a+u2(u2a))21)(n+4dy)2+1(x+cu)2]2[p+(an1)+b(2an+2an22n2)m]2[q+y(ap1)+s(2ap+2ap22p2)x]2[z+p(ap)+t(2app21)pm]2)>0{\displaystyle {\begin{aligned}&(k+2)(1-{}\\[6pt]&[wz+h+j-q]^{2}-{}\\[6pt]&[(gk+2g+k+1)(h+j)+h-z]^{2}-{}\\[6pt]&[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}]^{2}-{}\\[6pt]&[2n+p+q+z-e]^{2}-{}\\[6pt]&[e^{3}(e+2)(a+1)^{2}+1-o^{2}]^{2}-{}\\[6pt]&[(a^{2}-1)y^{2}+1-x^{2}]^{2}-{}\\[6pt]&[16r^{2}y^{4}(a^{2}-1)+1-u^{2}]^{2}-{}\\[6pt]&[n+\ell +v-y]^{2}-{}\\[6pt]&[(a^{2}-1)\ell ^{2}+1-m^{2}]^{2}-{}\\[6pt]&[ai+k+1-\ell -i]^{2}-{}\\[6pt]&[((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}]^{2}-{}\\[6pt]&[p+\ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m]^{2}-{}\\[6pt]&[q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x]^{2}-{}\\[6pt]&[z+p\ell (a-p)+t(2ap-p^{2}-1)-pm]^{2})\\[6pt]&>0\end{aligned}}}

is a polynomial inequality in 26 variables, and the set of prime numbers is identical to the set of positive values taken on by the left-hand side as the variablesa,b, ...,z range over the nonnegative integers.

A general theorem ofMatiyasevich says that if a set is defined by a system of Diophantine equations, it can also be defined by a system of Diophantine equations in only 9 variables.[9] Hence, there is a prime-generating polynomial inequality as above with only 10 variables. However, its degree is large (in the order of 1045). On the other hand, there also exists such a set of equations of degree only 4, but in 58 variables.[10]

Mills' formula

[edit]

The first such formula known was established by W. H. Mills (1947), who proved that there exists areal numberA such that, if

dn=A3n{\displaystyle d_{n}=A^{3^{n}}}

then

dn=A3n{\displaystyle \left\lfloor d_{n}\right\rfloor =\left\lfloor A^{3^{n}}\right\rfloor }

is a prime number for all positive integersn{\displaystyle n}.[11] If theRiemann hypothesis is true, then the smallest suchA{\displaystyle A} has a value of around 1.3063778838630806904686144926... (sequenceA051021 in theOEIS) and is known asMills' constant.[12] This value gives rise to the primesd1=2{\displaystyle \left\lfloor d_{1}\right\rfloor =2},d2=11{\displaystyle \left\lfloor d_{2}\right\rfloor =11},d3=1361{\displaystyle \left\lfloor d_{3}\right\rfloor =1361}, ... (sequenceA051254 in theOEIS). Very little is known about the constantA{\displaystyle A} (not even whether it isrational). This formula has no practical value, because there is no known way of calculating the constant without finding primes in the first place.

There is nothing special about thefloor function in the formula. Tóth proved that there also exists a constantB{\displaystyle B} such that

Brn{\displaystyle \lceil B^{r^{n}}\rceil }

is also prime-representing forr>2.106{\displaystyle r>2.106\ldots }.[13]

In the caser=3{\displaystyle r=3}, the value of the constantB{\displaystyle B} begins with 1.24055470525201424067... The first few primes generated are:

2,7,337,38272739,56062005704198360319209,{\displaystyle 2,7,337,38272739,56062005704198360319209,}
176199995814327287356671209104585864397055039072110696028654438846269,{\displaystyle 176199995814327287356671209104585864397055039072110696028654438846269,\ldots }

Without assuming the Riemann hypothesis, Elsholtz developed several prime-representingfunctions similar to those of Mills. For example, ifA=1.00536773279814724017{\displaystyle A=1.00536773279814724017\ldots }, thenA1010n{\displaystyle \left\lfloor A^{10^{10n}}\right\rfloor } is prime for all positive integersn{\displaystyle n}. Similarly, ifA=3.8249998073439146171615551375{\displaystyle A=3.8249998073439146171615551375\ldots }, thenA313n{\displaystyle \left\lfloor A^{3^{13n}}\right\rfloor } is prime for all positive integersn{\displaystyle n}.[14]

Wright's formula

[edit]

Atetrationally growing prime-generating formula similar to Mills' comes from a theorem ofE. M. Wright. He proved that there exists a real numberα such that, if

g0=α{\displaystyle g_{0}=\alpha } and
gn+1=2gn{\displaystyle g_{n+1}=2^{g_{n}}} forn0{\displaystyle n\geq 0},

then

gn=222α{\displaystyle \left\lfloor g_{n}\right\rfloor =\left\lfloor 2^{\dots ^{2^{2^{\alpha }}}}\right\rfloor }

is prime for alln1{\displaystyle n\geq 1}.[15]Wright gives the first seven decimal places of such a constant:α=1.9287800{\displaystyle \alpha =1.9287800}. This value gives rise to the primesg1=2α=3{\displaystyle \left\lfloor g_{1}\right\rfloor =\left\lfloor 2^{\alpha }\right\rfloor =3},g2=13{\displaystyle \left\lfloor g_{2}\right\rfloor =13}, andg3=16381{\displaystyle \left\lfloor g_{3}\right\rfloor =16381}.g4{\displaystyle \left\lfloor g_{4}\right\rfloor } iseven, and so is not prime. However, withα=1.9287800+8.2843104933{\displaystyle \alpha =1.9287800+8.2843\cdot 10^{-4933}},g1{\displaystyle \left\lfloor g_{1}\right\rfloor },g2{\displaystyle \left\lfloor g_{2}\right\rfloor }, andg3{\displaystyle \left\lfloor g_{3}\right\rfloor } are unchanged, whileg4{\displaystyle \left\lfloor g_{4}\right\rfloor } is a prime with 4932 digits.[16] Thissequence of primes cannot be extended beyondg4{\displaystyle \left\lfloor g_{4}\right\rfloor } without knowing more digits ofα{\displaystyle \alpha }. Like Mills' formula, and for the same reasons, Wright's formula cannot be used to find primes.

A function that represents all primes

[edit]

Given the constantf1=2.920050977316{\displaystyle f_{1}=2.920050977316\ldots } (sequenceA249270 in theOEIS), forn2{\displaystyle n\geq 2}, define the sequence

fn=fn1(fn1fn1+1){\displaystyle f_{n}=\left\lfloor f_{n-1}\right\rfloor (f_{n-1}-\left\lfloor f_{n-1}\right\rfloor +1)}1

where {\displaystyle \left\lfloor \ \right\rfloor } is thefloor function.Then forn1{\displaystyle n\geq 1},fn{\displaystyle \left\lfloor f_{n}\right\rfloor } equals then{\displaystyle n}th prime:f1=2{\displaystyle \left\lfloor f_{1}\right\rfloor =2},f2=3{\displaystyle \left\lfloor f_{2}\right\rfloor =3},f3=5{\displaystyle \left\lfloor f_{3}\right\rfloor =5}, etc.[17]The initial constantf1=2.920050977316{\displaystyle f_{1}=2.920050977316} given in the article is precise enough for equation (1) to generate the primes through 37, the12{\displaystyle 12}th prime.

Theexact value off1{\displaystyle f_{1}} that generatesall primes is given by the rapidly-convergingseries

f1=n=1pn1Pn=211+312+5123+71235+,{\displaystyle f_{1}=\sum _{n=1}^{\infty }{\frac {p_{n}-1}{P_{n}}}={\frac {2-1}{1}}+{\frac {3-1}{2}}+{\frac {5-1}{2\cdot 3}}+{\frac {7-1}{2\cdot 3\cdot 5}}+\cdots ,}

wherepn{\displaystyle p_{n}} is then{\displaystyle n}th prime, andPn{\displaystyle P_{n}} is the product of all primes less thanpn{\displaystyle p_{n}}. The more digits off1{\displaystyle f_{1}} that we know, the more primes equation (1) will generate. For example, we can use 25 terms in the series, using the 25 primes less than 100, to calculate the following more precise approximation:

f12.920050977316134712092562917112019.{\displaystyle f_{1}\simeq 2.920050977316134712092562917112019.}

This has enough digits for equation (1) to yield again the 25 primes less than 100.

As with Mills' formula and Wright's formula above, in order to generate a longer list of primes, we need to start by knowing more digits of the initial constant,f1{\displaystyle f_{1}}, which in this case requires a longer list of primes in its calculation.

Plouffe's formulas

[edit]

In 2018Simon Plouffeconjectured a set of formulas for primes. Similarly to the formula of Mills, they are of the form

{a0rn}{\displaystyle \left\{a_{0}^{r^{n}}\right\}}

where{ }{\displaystyle \{\ \}} is the function rounding to the nearest integer. For example, witha043.80468771580293481{\displaystyle a_{0}\approx 43.80468771580293481} andr=5/4{\displaystyle r=5/4}, this gives 113, 367, 1607, 10177, 102217... (sequenceA323176 in theOEIS). Usinga0=10500+961+ε{\displaystyle a_{0}=10^{500}+961+\varepsilon } andr=1.01{\displaystyle r=1.01} withε{\displaystyle \varepsilon } a certain number between 0 and one half, Plouffe found that he could generate a sequence of 50probable primes (with high probability of being prime). Presumably there exists an ε such that this formula will give an infinite sequence of actual prime numbers. The number of digits starts at 501 and increases by about 1% each time.[18][19]

Prime formulas and polynomial functions

[edit]

It is known that no non-constant polynomial functionP(n) with integer coefficients exists that evaluates to a prime number for all integersn. The proof is as follows: suppose that such a polynomial existed. ThenP(1) would evaluate to a primep, soP(1)0(modp){\displaystyle P(1)\equiv 0{\pmod {p}}}. But for any integerk,P(1+kp)0(modp){\displaystyle P(1+kp)\equiv 0{\pmod {p}}} also, soP(1+kp){\displaystyle P(1+kp)} cannot also be prime (as it would be divisible byp) unless it werep itself. But the only wayP(1+kp)=P(1)=p{\displaystyle P(1+kp)=P(1)=p} for allk is if the polynomial function is constant.The same reasoning shows an even stronger result: no non-constant polynomial functionP(n) exists that evaluates to a prime number foralmost all integersn.

Euler first noticed (in 1772) that thequadratic polynomial

P(n)=n2+n+41{\displaystyle P(n)=n^{2}+n+41}

is prime for the 40 integersn = 0, 1, 2, ..., 39, with corresponding primes 41, 43, 47, 53, 61, 71, ..., 1601. The differences between the terms are 2, 4, 6, 8, 10... Forn = 40, it produces asquare number, 1681, which is equal to 41 × 41, the smallestcomposite number for this formula forn ≥ 0. If 41 dividesn, it dividesP(n) too. Furthermore, sinceP(n) can be written asn(n + 1) + 41, if 41 dividesn + 1 instead, it also dividesP(n). The phenomenon is related to theUlam spiral, which is also implicitly quadratic, and theclass number; this polynomial is related to theHeegner number163=4411{\displaystyle 163=4\cdot 41-1}. There are analogous polynomials forp=2,3,5,11 and 17{\displaystyle p=2,3,5,11{\text{ and }}17} (thelucky numbers of Euler), corresponding to other Heegner numbers.

Given a positive integerS, there may be infinitely manyc such that the expressionn2 +n +c is always coprime toS. The integerc may be negative, in which case there is a delay before primes are produced.

It is known, based onDirichlet's theorem on arithmetic progressions, that linear polynomial functionsL(n)=an+b{\displaystyle L(n)=an+b} produce infinitely many primes as long asa andb arerelatively prime (though no such function will assume prime values for all values ofn). Moreover, theGreen–Tao theorem says that for anyk there exists a pair ofa andb, with the property thatL(n)=an+b{\displaystyle L(n)=an+b} is prime for anyn from 0 throughk − 1. However, as of 2020,[update] the best known result of such type is fork = 27:

224584605939537911+18135696597948930n{\displaystyle 224584605939537911+18135696597948930n}

is prime for alln from 0 through 26.[20] It is not even known whether there exists aunivariate polynomial of degree at least 2, that assumes an infinite number of values that are prime; seeBunyakovsky conjecture.

Possible formula using a recurrence relation

[edit]

Another prime generator is defined by therecurrence relation

an=an1+gcd(n,an1),a1=7,{\displaystyle a_{n}=a_{n-1}+\gcd(n,a_{n-1}),\quad a_{1}=7,}

where gcd(x,y) denotes thegreatest common divisor ofx andy. The sequence of differencesan+1an starts with 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, ... (sequenceA132199 in theOEIS).Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1,an) are alwaysodd and so never equal to 2. The same paper conjectures that the sequence contains all odd primes: in fact, 587 is the smallest odd prime not appearing in the first 10,000 outcomes different from 1.[21]

This recurrence is rather inefficient. In perspective, it is trivial to write an algorithm to generate all prime numbers (from the definition), and manymore efficient algorithms are known. Thus, such recurrence relations are more a matter of curiosity than of practical use.

Other

[edit]

Formula fromPaulo Ribenboim:f(n)=k=22nk1|k2i=1k1[{ki}]|1|nj=2k1|j2i=1j1[{ji}]||{\displaystyle f(n)=\sum _{k=2}^{2^{n}}k\cdot {\frac {1}{\left|k-2\sum _{i=1}^{k-1}\left[-\left\{{\frac {k}{i}}\right\}\right]\right|}}\cdot {\frac {1}{\left|n-\sum _{j=2}^{k}{\frac {1}{\left|j-2\sum _{i=1}^{j-1}\left[-\left\{{\frac {j}{i}}\right\}\right]\right|}}\right|}}}[22][23]

See also

[edit]

References

[edit]
  1. ^Mackinnon, Nick (June 1987), "Prime number formulae",The Mathematical Gazette,71 (456):113–114,doi:10.2307/3616496,JSTOR 3616496,S2CID 171537609.
  2. ^Willans, C. P. (December 1964), "On formulae for then{\displaystyle n}th prime number",The Mathematical Gazette,48 (366):413–415,doi:10.2307/3611701,JSTOR 3611701,S2CID 126149459.
  3. ^Neill, T. B. M.; Singer, M. (October 1965), "To the Editor,The Mathematical Gazette",The Mathematical Gazette,49 (369): 303,doi:10.2307/3612863,JSTOR 3612863
  4. ^Goodstein, R. L.; Wormell, C. P. (February 1967), "Formulae For Primes",The Mathematical Gazette,51 (375):35–38,doi:10.2307/3613607,JSTOR 3613607
  5. ^Wilf, Herbert S. (1982), "What is an answer?",The American Mathematical Monthly,89 (5):289–292,doi:10.2307/2321713,JSTOR 2321713,MR 0653502
  6. ^Dudley, Underwood (1983), "Formulas for primes",Mathematics Magazine,56 (1):17–22,doi:10.2307/2690261,JSTOR 2690261,MR 0692169
  7. ^J. P. Jones, "Formula For then{\displaystyle n}th Prime Number". Canadian Mathematical Bulletin vol. 18, no. 3 (1975).
  8. ^Jones, James P.; Sato, Daihachiro; Wada, Hideo;Wiens, Douglas (1976),"Diophantine representation of the set of prime numbers",American Mathematical Monthly,83 (6), Mathematical Association of America:449–464,doi:10.2307/2318339,JSTOR 2318339, archived fromthe original on 2012-02-24.
  9. ^Matiyasevich, Yuri V. (1999),"Formulas for Prime Numbers", inTabachnikov, Serge (ed.),Kvant Selecta: Algebra and Analysis, vol. II,American Mathematical Society, pp. 13–24,ISBN 978-0-8218-1915-9.
  10. ^Jones, James P. (1982), "Universal diophantine equation",Journal of Symbolic Logic,47 (3):549–571,doi:10.2307/2273588,JSTOR 2273588,S2CID 11148823.
  11. ^Mills, W. H. (1947),"A prime-representing function"(PDF),Bulletin of the American Mathematical Society,53 (6): 604,doi:10.1090/S0002-9904-1947-08849-2.
  12. ^Caldwell, Chris K.; Cheng, Yuanyou (2005),"Determining Mills' Constant and a Note on Honaker's Problem",Journal of Integer Sequences,8, Article 05.4.1.,Bibcode:2005JIntS...8...41S
  13. ^Tóth, László (2017),"A Variation on Mills-Like Prime-Representing Functions"(PDF),Journal of Integer Sequences,20 (17.9.8),arXiv:1801.08014.
  14. ^Elsholtz, Christian (2020), "Unconditional Prime-Representing Functions, Following Mills",American Mathematical Monthly,127 (7), Washington, DC:Mathematical Association of America:639–642,arXiv:2004.01285,doi:10.1080/00029890.2020.1751560,S2CID 214795216
  15. ^E. M. Wright (1951), "A prime-representing function",American Mathematical Monthly,58 (9):616–618,doi:10.2307/2306356,JSTOR 2306356
  16. ^Baillie, Robert (5 June 2017), "Wright's Fourth Prime",arXiv:1705.09741v3 [math.NT]
  17. ^Fridman, Dylan; Garbulsky, Juli; Glecer, Bruno; Grime, James; Tron Florentin, Massi (2019), "A Prime-Representing Constant",American Mathematical Monthly,126 (1), Washington, DC:Mathematical Association of America:70–73,arXiv:2010.15882,doi:10.1080/00029890.2019.1530554,S2CID 127727922
  18. ^Steckles, Katie (January 26, 2019),"Mathematician's record-beating formula can generate 50 prime numbers",New Scientist,doi:10.1016/S0262-4079(19)30144-7
  19. ^Simon Plouffe (2019), "A set of formulas for primes",arXiv:1901.01849 [math.NT] As of January 2019, the number he gives in the appendix for the 50th number generated is actually the 48th.
  20. ^PrimeGrid's AP27 Search, Official announcement, fromPrimeGrid. The AP27 is listed in"Jens Kruse Andersen's Primes in Arithmetic Progression Records page".
  21. ^Rowland, Eric S. (2008),"A Natural Prime-Generating Recurrence",Journal of Integer Sequences,11 (2): 08.2.8,arXiv:0710.3217,Bibcode:2008JIntS..11...28R.
  22. ^Omiljanowski, Krzysztof."Czy istnieje wzór na n-tą liczbę pierwszą?".matematyka.wroc.pl. Retrieved24 June 2025.
  23. ^Ribenboim, Paulo (1997-01-01). "Chapter 3".The little Book of Big Primes. Wydawnictwo WNT. Retrieved24 June 2025.

Further reading

[edit]
  • Regimbal, Stephen (1975), "An explicit Formula for the k-th prime number",Mathematics Magazine,48 (4), Mathematical Association of America:230–232,doi:10.2307/2690354,JSTOR 2690354.
  • A Venugopalan.Formula for primes, twinprimes, number of primes and number of twinprimes. Proceedings of the Indian Academy of Sciences—Mathematical Sciences, Vol. 92, No 1, September 1983,pp. 49–52errata

External links

[edit]
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Formula_for_primes&oldid=1301018250"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp