Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Semantics (computer science)

From Wikipedia, the free encyclopedia
(Redirected fromFormal semantics of programming languages)
Not to be confused withComputational semantics.
Mathematical study of the meaning of programming languages
Semantics
Subfields
Topics
Analysis
Applications
Semantics of
programming languages
Types
Theory
Part ofa series on
Formal languages

Inprogramming language theory,semantics is the rigorous mathematical logic study of the meaning ofprogramming languages.[1] Semantics assignscomputational meaning to validstrings in aprogramming language syntax. It is closely related to, and often crosses over with, thesemantics of mathematical proofs.

Semantics describes the processes a computer follows whenexecuting a program in that specific language. This can be done by describing the relationship between the input and output of a program, or giving an explanation of how the program will be executed on a certainplatform, thereby creating amodel of computation.

History

[edit]

In 1967,Robert W. Floyd published the paperAssigning meanings to programs; his chief aim was "a rigorous standard for proofs about computer programs, includingproofs of correctness, equivalence, and termination".[2][3] Floyd further wrote:[2]

A semantic definition of a programming language, in our approach, is founded on asyntactic definition. It must specify which of the phrases in a syntactically correct program representcommands, and whatconditions must be imposed on an interpretation in the neighborhood of each command.

In 1969,Tony Hoare published a paper onHoare logic seeded by Floyd's ideas, now sometimes collectively calledaxiomatic semantics.[4][5]

In the 1970s, the termsoperational semantics anddenotational semantics emerged.[5]

Overview

[edit]

The field of formal semantics encompasses all of the following:

  • The definition of semantic models
  • The relations between different semantic models
  • The relations between different approaches to meaning
  • The relation between computation and the underlying mathematical structures from fields such aslogic,set theory,model theory,category theory, etc.

It has close links with other areas ofcomputer science such asprogramming language design,type theory,compilers andinterpreters,program verification andmodel checking.

Approaches

[edit]

There are many approaches to formal semantics; these belong to three major classes:

  • Denotational semantics,[6] whereby each phrase in the language is interpreted as adenotation, i.e. a conceptual meaning that can be thought of abstractly. Such denotations are often mathematical objects inhabiting a mathematical space, but it is not a requirement that they should be so. As a practical necessity, denotations are described using some form of mathematical notation, which can in turn be formalized as a denotational metalanguage. For example, denotational semantics offunctional languages often translate the language intodomain theory. Denotational semantic descriptions can also serve as compositional translations from a programming language into the denotational metalanguage and used as a basis for designingcompilers.
  • Operational semantics,[7] whereby the execution of the language is described directly (rather than by translation). Operational semantics loosely corresponds tointerpretation, although again the "implementation language" of the interpreter is generally a mathematical formalism. Operational semantics may define anabstract machine (such as theSECD machine), and give meaning to phrases by describing the transitions they induce on states of the machine. Alternatively, as with the purelambda calculus, operational semantics can be defined via syntactic transformations on phrases of the language itself;
  • Axiomatic semantics,[8] whereby one gives meaning to phrases by describing theaxioms that apply to them. Axiomatic semantics makes no distinction between a phrase's meaning and the logical formulas that describe it; its meaningis exactly what can be proven about it in some logic. The canonical example of axiomatic semantics isHoare logic.

Apart from the choice between denotational, operational, or axiomatic approaches, most variations in formal semantic systems arise from the choice of supporting mathematical formalism.[citation needed]

Variations

[edit]

Some variations of formal semantics include the following:

Describing relationships

[edit]

For a variety of reasons, one might wish to describe the relationships between different formal semantics. For example:

  • To prove that a particular operational semantics for a language satisfies the logical formulas of an axiomatic semantics for that language. Such a proof demonstrates that it is "sound" to reason about a particular (operational)interpretation strategy using a particular (axiomatic)proof system.
  • To prove that operational semantics over a high-level machine is related by asimulation with the semantics over a low-level machine, whereby the low-level abstract machine contains more primitive operations than the high-level abstract machine definition of a given language. Such a proof demonstrates that the low-level machine "faithfully implements" the high-level machine.

It is also possible to relate multiple semantics throughabstractions via the theory ofabstract interpretation.[citation needed]

See also

[edit]

References

[edit]
  1. ^Goguen, Joseph A. (1975). "Semantics of computation".Category Theory Applied to Computation and Control. Lecture Notes in Computer Science. Vol. 25.Springer. pp. 151–163.doi:10.1007/3-540-07142-3_75.ISBN 978-3-540-07142-6.
  2. ^abFloyd, Robert W. (1967)."Assigning Meanings to Programs"(PDF). In Schwartz, J.T. (ed.).Mathematical Aspects of Computer Science. Proceedings of Symposium on Applied Mathematics. Vol. 19. American Mathematical Society. pp. 19–32.ISBN 0821867288.
  3. ^Knuth, Donald E."Memorial Resolution: Robert W. Floyd (1936–2001)"(PDF).Stanford University Faculty Memorials. Stanford Historical Society.
  4. ^Hoare, C. A. R. (October 1969)."An axiomatic basis for computer programming".Communications of the ACM.12 (10):576–580.doi:10.1145/363235.363259.S2CID 207726175.
  5. ^abWinskel, Glynn (1993).The formal semantics of programming languages : an introduction. Cambridge, Mass.: MIT Press. p. xv.ISBN 978-0-262-23169-5.
  6. ^Schmidt, David A. (1986).Denotational Semantics: A Methodology for Language Development. William C. Brown Publishers.ISBN 9780205104505.
  7. ^Plotkin, Gordon D. (1981). A structural approach to operational semantics (Report). Technical Report DAIMI FN-19. Computer Science Department,Aarhus University.
  8. ^abGoguen, Joseph A.; Thatcher, James W.; Wagner, Eric G.; Wright, Jesse B. (1977)."Initial algebra semantics and continuous algebras".Journal of the ACM.24 (1):68–95.doi:10.1145/321992.321997.S2CID 11060837.
  9. ^Mosses, Peter D. (1996). Theory and practice of action semantics (Report). BRICS Report RS9653.Aarhus University.
  10. ^Deransart, Pierre; Jourdan, Martin; Lorho, Bernard (1988)."Attribute Grammars: Definitions, Systems and Bibliography. Lecture Notes in Computer Science 323.Springer-Verlag.ISBN 9780387500560.
  11. ^Lawvere, F. William (1963)."Functorial semantics of algebraic theories".Proceedings of the National Academy of Sciences of the United States of America.50 (5):869–872.Bibcode:1963PNAS...50..869L.doi:10.1073/pnas.50.5.869.PMC 221940.PMID 16591125.
  12. ^Andrzej Tarlecki;Rod M. Burstall;Joseph A. Goguen (1991)."Some fundamental algebraic tools for the semantics of computation: Part 3. Indexed categories".Theoretical Computer Science.91 (2):239–264.doi:10.1016/0304-3975(91)90085-G.
  13. ^Batty, Mark; Memarian, Kayvan; Nienhuis, Kyndylan; Pichon-Pharabod, Jean; Sewell, Peter (2015)."The problem of programming language concurrency semantics"(PDF).Proceedings of the European Symposium on Programming Languages and Systems.Springer. pp. 283–307.doi:10.1007/978-3-662-46669-8_12.
  14. ^Abramsky, Samson (2009). "Semantics of interaction: An introduction to game semantics". In Andrew M. Pitts; P. Dybjer (eds.).Semantics and Logics of Computation. Cambridge University Press. pp. 1–32.doi:10.1017/CBO9780511526619.002.ISBN 9780521580571.
  15. ^Dijkstra, Edsger W. (1975)."Guarded commands, nondeterminacy and formal derivation of programs".Communications of the ACM.18 (8):453–457.doi:10.1145/360933.360975.S2CID 1679242.

Further reading

[edit]
Textbooks
Lecture notes

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Semantics_(computer_science)&oldid=1319103867"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp