Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ford–GM 10-speed automatic transmission

From Wikipedia, the free encyclopedia
(Redirected fromFord-GM 10-speed automatic transmission)
Motor vehicle automatic transmission models
Motor vehicle
Ford 10R 60 · 10R 80 · 10R 140
GM 10L 80 · 10L 90GM 10L 1000 (Allison)
Overview
ManufacturerFord ·General Motors
Production2017–present
Body and chassis
Class10-speedlongitudinalautomatic transmission
RelatedZF 8HP ·MB 9G-Tronic
Chronology
PredecessorFord 6R 60 · 6R 80 · 6R 140
GM 8L 45 · 8L 90

TheFord–GM 10-speed automatic transmission is part of a joint venture betweenFord Motor Company andGeneral Motors to design and engineer two transmissions: alongitudinal 10-speed transmission and atransverse 9-speed trans-axle. Each company manufactures its own unique version of the transmissions in its own factories.[1][2] The 10-speed transmission was designed by Ford, while the 9-speed transmission was designed by GM.[3][4]

Gear Ratios[a]
ModelFirst
Delivery
GearTotal SpanAvg.
Step
Components
R12345678910Nomi-
nal
Effec-
tive
Cen-
ter
Totalper
Gear[b]
Ford 10R 80
GM 10L 80
GM 10L 90
2017
2017
2018
−4.8664.6962.9852.1461.7691.5201.2751.0000.8540.6890.6367.3867.3861.7281.2494
Gearsets
2
Brakes
4
Clutches
1.000
Ford
10R 140
2020−4.6954.6152.9192.1321.7731.5191.2771.0000.8510.6870.6327.2997.2991.7081.247
GM 10L 1000
(Allison)
2020−4.5454.5382.8682.0611.7151.4821.2581.0000.8510.6880.6327.1827.1821.6941.245
Ford 10R 602020−4.8854.7142.9972.1491.7691.5211.2751.0000.8530.6890.6367.4167.4161.7311.249
  1. ^Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage
  2. ^Forward gears only

Production

[edit]

The10R 80 was first produced at the Ford Livonia Transmission Plant inLivonia, Michigan, and the Hydra-Matic10L 80 is made at the General Motors Romulus Powertrain Plant, inRomulus, Michigan.[5] GM's Silao, Mexico, transmission plant started10L 80 production in 2018,[6] while Ford'sSharonville Transmission plant started10R 80 production in 2018.[7]

Specifications

[edit]

Combined Parallel and Serial Coupled Gearset Concept For More Gears And Improved Cost-Effectiveness

[edit]
Gearset Concept: Cost-Effectiveness[a]
With
Assessment
Output:
Gear
Ratios
Innovation
Elasticity[b]
Δ Output : Δ Input
Input: Main Components
TotalGearsetsBrakesClutches
10R & 10L
Ref. Object
nO1{\displaystyle n_{O1}}
nO2{\displaystyle n_{O2}}
Topic[b]nI=nG+{\displaystyle n_{I}=n_{G}+}
nB+nC{\displaystyle n_{B}+n_{C}}
nG1{\displaystyle n_{G1}}
nG2{\displaystyle n_{G2}}
nB1{\displaystyle n_{B1}}
nB2{\displaystyle n_{B2}}
nC1{\displaystyle n_{C1}}
nC2{\displaystyle n_{C2}}
Δ NumbernO1nO2{\displaystyle n_{O1}-n_{O2}}nI1nI2{\displaystyle n_{I1}-n_{I2}}nG1nG2{\displaystyle n_{G1}-n_{G2}}nB1nB2{\displaystyle n_{B1}-n_{B2}}nC1nC2{\displaystyle n_{C1}-n_{C2}}
Relative ΔΔ Output
nO1nO2nO2{\displaystyle {\tfrac {n_{O1}-n_{O2}}{n_{O2}}}}
nO1nO2nO2:nI1nI2nI2{\displaystyle {\tfrac {n_{O1}-n_{O2}}{n_{O2}}}:{\tfrac {n_{I1}-n_{I2}}{n_{I2}}}}
=nO1nO2nO2nI2nI1nI2{\displaystyle ={\tfrac {n_{O1}-n_{O2}}{n_{O2}}}\cdot {\tfrac {n_{I2}}{n_{I1}-n_{I2}}}}
Δ Input
nI1nI2nI2{\displaystyle {\tfrac {n_{I1}-n_{I2}}{n_{I2}}}}
nG1nG2nG2{\displaystyle {\tfrac {n_{G1}-n_{G2}}{n_{G2}}}}nB1nB2nB2{\displaystyle {\tfrac {n_{B1}-n_{B2}}{n_{B2}}}}nC1nC2nC2{\displaystyle {\tfrac {n_{C1}-n_{C2}}{n_{C2}}}}
GM 10L
GM 8L[c]
10[d]
8[d]
Progress
General Motors[b]
10
9
4
4
2
2
4
3
Δ Number21001
Relative Δ0.250
28{\displaystyle {\tfrac {2}{8}}}
2.250[b]
28:19=1491=94{\displaystyle {\tfrac {2}{8}}:{\tfrac {1}{9}}={\tfrac {1}{4}}\cdot {\tfrac {9}{1}}={\tfrac {9}{4}}}
0.111
19{\displaystyle {\tfrac {1}{9}}}
0.000
04{\displaystyle {\tfrac {0}{4}}}
0.000
02{\displaystyle {\tfrac {0}{2}}}
0.333
13{\displaystyle {\tfrac {1}{3}}}
Ford 10R
Ford 6R[c]
10[d]
6[d]
Progress
Ford[b]
10
8
4
3
2
2
4
3
Δ Number42101
Relative Δ0.667
46{\displaystyle {\tfrac {4}{6}}}
2.667[b]
46:28=2341=83{\displaystyle {\tfrac {4}{6}}:{\tfrac {2}{8}}={\tfrac {2}{3}}\cdot {\tfrac {4}{1}}={\tfrac {8}{3}}}
0.250
28{\displaystyle {\tfrac {2}{8}}}
0.333
13{\displaystyle {\tfrac {1}{3}}}
0.000
02{\displaystyle {\tfrac {0}{2}}}
0.333
13{\displaystyle {\tfrac {1}{3}}}
10R & 10L
8HP[e]
10[d]
8[d]
Current
Market Position[b]
10
8
4
4
2
2
4
3
Δ Number21001
Relative Δ0.250
28{\displaystyle {\tfrac {2}{8}}}
2.250[b]
28:19=1491=94{\displaystyle {\tfrac {2}{8}}:{\tfrac {1}{9}}={\tfrac {1}{4}}\cdot {\tfrac {9}{1}}={\tfrac {9}{4}}}
0.111
19{\displaystyle {\tfrac {1}{9}}}
0.000
04{\displaystyle {\tfrac {0}{4}}}
0.000
02{\displaystyle {\tfrac {0}{2}}}
0.333
13{\displaystyle {\tfrac {1}{3}}}
10R & 10L
3-Speed[f]
10[d]
3[d]
Historical
Market Position[b]
10
7
4
2
2
3
4
2
Δ Number732-12
Relative Δ2.333
73{\displaystyle {\tfrac {7}{3}}}
5.444[b]
73:37=7373=499{\displaystyle {\tfrac {7}{3}}:{\tfrac {3}{7}}={\tfrac {7}{3}}\cdot {\tfrac {7}{3}}={\tfrac {49}{9}}}
0.429
37{\displaystyle {\tfrac {3}{7}}}
1.000
22{\displaystyle {\tfrac {2}{2}}}
−0.333
13{\displaystyle {\tfrac {-1}{3}}}
1.000
22{\displaystyle {\tfrac {2}{2}}}
  1. ^Progress increases cost-effectiveness and is reflected in theratio of forward gears to main components.
    It depends on thepower flow:
    • parallel: using the two degrees of freedom ofplanetary gearsets
      • to increase the number of gears
      • with unchanged number of components
    • serial: in-line combinedplanetary gearsets without using the two degrees of freedom
      • to increase the number of gears
      • a corresponding increase in the number of components is unavoidable
  2. ^abcdefghijInnovationElasticity Classifies Progress And Market Position
    • Automobile manufacturers drive forward technical developments primarily in order to remain competitive or to achieve or defend technological leadership. This technical progress has therefore always been subject to economic constraints
    • Only innovations whose relative additional benefit is greater than the relative additional resource input, i.e. whoseeconomicelasticity is greater than 1, are considered for realization
    • Therequired innovationelasticity of an automobile manufacturer depends on its expected return on investment. The basic assumption that the relative additional benefit must beat least twice as high as the relative additional resource input helps with orientation
      • negative, if the output increases and the input decreases,is perfect
      • 2 or above is good
      • 1 or above is acceptable (red)
      • below this is unsatisfactory (bold)
  3. ^abDirect Predecessor
    • To reflect the progress of the specific model change
  4. ^abcdefghplus 1 reverse gear
  5. ^Current Reference Standard (Benchmark)
    • The 8HP has become the new reference standard (benchmark) for automatic transmissions
  6. ^Historical Reference Standard (Benchmark)
    • 3-speed transmissions with torque converters have established the modern market for automatic transmissions and thus made it possible in the first place, as this design proved to be a particularly successful compromise between cost and performance
    • It became the archetype and dominated the world market for around 3 decades, setting the standard for automatic transmissions. It was only when fuel consumption became the focus of interest that this design reached its limits, which is why it has now completely disappeared from the market
    • What has remained is the orientation that it offers as a reference standard (point of reference, benchmark) for this market for determining progressiveness and thus the market position of all other, later designs
    • All transmission variants consist of 7 main components
    • Typical examples are

Gearset Concept: Quality

[edit]

The transmission is based on the well-known 8-speed automatic transmission8HP fromZF. A unique triple-clutch assembly on a dedicated intermediate shaft, placed in the middle of the architecture, replaces two ordinary clutches and is the key for packaging the 10-speed unit into the same space as the previous transmission.[8]

  • Compared to the 8-speed architecture
    • The transmission offers smaller steps between the lower gears
    • Which benefits acceleration at low speeds.
    • The transmission does not offer any significantly smaller steps between the upper gears
    • Where this is more important than in the lower gears.
    • The transmission does not offer any increase in the overall range.
  • The ratios of the 10 gears are
    • much more unevenly distributed than in the 8-speed architecture
    • and even more uneven than in the direct competitor9G-Tronic fromMercedes-Benz.
    • The gear step from 9th to 10th gear is unfavorably small at less than 9%.

These weaknesses largely offset the advantage of the additional gears.

Gear Ratio Analysis
In-Depth Analysis
With Assessment[a]
Planetary Gearset: Teeth[b]CountNomi-
nal[c]
Effec-
tive[d]
Center[e]
Avg.[f]
Model
Type
Version
First Delivery
S1[g]
R1[h]
S2[i]
R2[j]
S3[k]
R3[l]
S4[m]
R4[n]
Brakes
Clutches
Ratio
Span
Gear
Step[o]
Gear
Ratio
R
iR{\displaystyle {i_{R}}}
1
i1{\displaystyle {i_{1}}}
2
i2{\displaystyle {i_{2}}}
3
i3{\displaystyle {i_{3}}}
4
i4{\displaystyle {i_{4}}}
5
i5{\displaystyle {i_{5}}}
6
i6{\displaystyle {i_{6}}}
7
i7{\displaystyle {i_{7}}}
8
i8{\displaystyle {i_{8}}}
9
i9{\displaystyle {i_{9}}}
10
i10{\displaystyle {i_{10}}}
Step[o]iRi1{\displaystyle -{\frac {i_{R}}{i_{1}}}}[p]i1i1{\displaystyle {\frac {i_{1}}{i_{1}}}}i1i2{\displaystyle {\frac {i_{1}}{i_{2}}}}[q]i2i3{\displaystyle {\frac {i_{2}}{i_{3}}}}i3i4{\displaystyle {\frac {i_{3}}{i_{4}}}}i4i5{\displaystyle {\frac {i_{4}}{i_{5}}}}i5i6{\displaystyle {\frac {i_{5}}{i_{6}}}}i6i7{\displaystyle {\frac {i_{6}}{i_{7}}}}i7i8{\displaystyle {\frac {i_{7}}{i_{8}}}}i8i9{\displaystyle {\frac {i_{8}}{i_{9}}}}i9i10{\displaystyle {\frac {i_{9}}{i_{10}}}}
Δ Step[r][s]i1i2:i2i3{\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}i2i3:i3i4{\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}i3i4:i4i5{\displaystyle {\tfrac {i_{3}}{i_{4}}}:{\tfrac {i_{4}}{i_{5}}}}i4i5:i5i6{\displaystyle {\tfrac {i_{4}}{i_{5}}}:{\tfrac {i_{5}}{i_{6}}}}i5i6:i6i7{\displaystyle {\tfrac {i_{5}}{i_{6}}}:{\tfrac {i_{6}}{i_{7}}}}i6i7:i7i8{\displaystyle {\tfrac {i_{6}}{i_{7}}}:{\tfrac {i_{7}}{i_{8}}}}i7i8:i8i9{\displaystyle {\tfrac {i_{7}}{i_{8}}}:{\tfrac {i_{8}}{i_{9}}}}i8i9:i9i10{\displaystyle {\tfrac {i_{8}}{i_{9}}}:{\tfrac {i_{9}}{i_{10}}}}
Shaft
Speed
i1iR{\displaystyle {\frac {i_{1}}{i_{R}}}}i1i1{\displaystyle {\frac {i_{1}}{i_{1}}}}i1i2{\displaystyle {\frac {i_{1}}{i_{2}}}}i1i3{\displaystyle {\frac {i_{1}}{i_{3}}}}i1i4{\displaystyle {\frac {i_{1}}{i_{4}}}}i1i5{\displaystyle {\frac {i_{1}}{i_{5}}}}i1i6{\displaystyle {\frac {i_{1}}{i_{6}}}}i1i7{\displaystyle {\frac {i_{1}}{i_{7}}}}i1i8{\displaystyle {\frac {i_{1}}{i_{8}}}}i1i9{\displaystyle {\frac {i_{1}}{i_{9}}}}i1i10{\displaystyle {\frac {i_{1}}{i_{10}}}}
Δ Shaft
Speed[t]
0i1iR{\displaystyle 0-{\tfrac {i_{1}}{i_{R}}}}i1i10{\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}i1i2i1i1{\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}i1i3i1i2{\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}i1i4i1i3{\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}i1i5i1i4{\displaystyle {\tfrac {i_{1}}{i_{5}}}-{\tfrac {i_{1}}{i_{4}}}}i1i6i1i5{\displaystyle {\tfrac {i_{1}}{i_{6}}}-{\tfrac {i_{1}}{i_{5}}}}i1i7i1i6{\displaystyle {\tfrac {i_{1}}{i_{7}}}-{\tfrac {i_{1}}{i_{6}}}}i1i8i1i7{\displaystyle {\tfrac {i_{1}}{i_{8}}}-{\tfrac {i_{1}}{i_{7}}}}i1i9i1i8{\displaystyle {\tfrac {i_{1}}{i_{9}}}-{\tfrac {i_{1}}{i_{8}}}}i1i10i1i9{\displaystyle {\tfrac {i_{1}}{i_{10}}}-{\tfrac {i_{1}}{i_{9}}}}
Specific
Torque[u]
T2;RT1;R{\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}}[v]T2;1T1;1{\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}}[v]T2;2T1;2{\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}}[v]T2;3T1;3{\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}}[v]T2;4T1;4{\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}}[v]T2;5T1;5{\displaystyle {\tfrac {T_{2;5}}{T_{1;5}}}}[v]T2;6T1;6{\displaystyle {\tfrac {T_{2;6}}{T_{1;6}}}}[v]T2;7T1;7{\displaystyle {\tfrac {T_{2;7}}{T_{1;7}}}}[v]T2;8T1;8{\displaystyle {\tfrac {T_{2;8}}{T_{1;8}}}}[v]T2;9T1;9{\displaystyle {\tfrac {T_{2;9}}{T_{1;9}}}}[v]T2;10T1;10{\displaystyle {\tfrac {T_{2;10}}{T_{1;10}}}}[v]
Efficiency
ηn{\displaystyle \eta _{n}}[u]
T2;RT1;R:iR{\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}}T2;1T1;1:i1{\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}}T2;2T1;2:i2{\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}}T2;3T1;3:i3{\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}}T2;4T1;4:i4{\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}:{i_{4}}}T2;5T1;5:i5{\displaystyle {\tfrac {T_{2;5}}{T_{1;5}}}:{i_{5}}}T2;6T1;6:i6{\displaystyle {\tfrac {T_{2;6}}{T_{1;6}}}:{i_{6}}}T2;7T1;7:i7{\displaystyle {\tfrac {T_{2;7}}{T_{1;7}}}:{i_{7}}}T2;8T1;8:i8{\displaystyle {\tfrac {T_{2;8}}{T_{1;8}}}:{i_{8}}}T2;9T1;9:i9{\displaystyle {\tfrac {T_{2;9}}{T_{1;9}}}:{i_{9}}}T2;10T1;10:i10{\displaystyle {\tfrac {T_{2;10}}{T_{1;10}}}:{i_{10}}}
Ford 10R 80
GM 10L 80
GM 10L 90
800 N⋅m (590 lb⋅ft) · 2017[9]
900 N⋅m (664 lb⋅ft) · 2018
45
95
51
89[10]
73
119
23
85[10]
2
4
7.3864
7.3864
1.7277
1.2488[o]
Gear
Ratio
−4.8661
40,8518,395{\displaystyle -{\tfrac {40,851}{8,395}}}
4.6957
10823{\displaystyle {\tfrac {108}{23}}}
2.9851[s]
2403805{\displaystyle {\tfrac {2403}{805}}}
2.1462
3,0241,409{\displaystyle {\tfrac {3,024}{1,409}}}
1.7690[o][t]
743420{\displaystyle {\tfrac {743}{420}}}
1.5201[o][s][t]
80,24452,789{\displaystyle {\tfrac {80,244}{52,789}}}
1.2751[o][s]
9,289,2967,285,081{\displaystyle {\tfrac {9,289,296}{7,285,081}}}
1.0000[o]
11{\displaystyle {\tfrac {1}{1}}}
0.8536[s][t]
650,168720,653{\displaystyle {\tfrac {650,168}{720,653}}}
0.6892
3,2044,649{\displaystyle {\tfrac {3,204}{4,649}}}
0.6357[t]
89140{\displaystyle {\tfrac {89}{140}}}
Step1.03631.00001.57301.39091.2132[o]1.1638[o]1.1921[o]1.2751[o]1.17151.23861.0841
Δ Step[r]1.1310[s]1.14651.04250.9762[s]0.9349[s]1.08850.9458[s]1.1425
Speed–0.96501.00001.57302.18792.65433.08903.68254.69565.50086.81347.3864
Δ Speed0.96501.00000.57300.61480.4665[t]0.4347[t]0.59351.01310.8052[t]1.31260.5730[t]
Specific
Torque[u]
–4.6591
–4.5573
4.6217
4.5848
2.9164
2.8821
2.1201
2.1071
1.7440
1.7316
1.5054
1.4980
1.2624
1.2559
1.00000.8489
0.8465
0.6839
0.6812
0.6310
0.6286
Efficiency
ηn{\displaystyle \eta _{n}}[u]
0.9575
0.9365
0.9843
0.9764
0.9770
0.9655
0.9879
0.9818
0.9858
0.9788
0.9903
0.9855
0.9900
0.9850
1.00000.9945
0.9917
0.9924
0.9885
0.9926
0.9889
Ford
10R 140
1,400 N⋅m (1,033 lb⋅ft) · 2020[11]58
122
50
86
69
111
26
94
2
4
7.2987
7.2987
1.7084
1.2471[o]
Gear
Ratio
−4.6951
23,8655,083{\displaystyle -{\tfrac {23,865}{5,083}}}
4.6154
6013{\displaystyle {\tfrac {60}{13}}}
2.9186
645221{\displaystyle {\tfrac {645}{221}}}
2.1319
5,4002,533{\displaystyle {\tfrac {5,400}{2,533}}}
1.7733[o][t]
3,4971,972{\displaystyle {\tfrac {3,497}{1,972}}}
1.5188[o][s][t]
41,96427,629{\displaystyle {\tfrac {41,964}{27,629}}}
1.2773[o][s]
303,768237,827{\displaystyle {\tfrac {303,768}{237,827}}}
1.0000[o]
11{\displaystyle {\tfrac {1}{1}}}
0.8514[s][t]
6,1927,273{\displaystyle {\tfrac {6,192}{7,273}}}
0.6871
516751{\displaystyle {\tfrac {516}{751}}}
0.6324[t]
4368{\displaystyle {\tfrac {43}{68}}}
Step1.01731.00001.58141.36901.2022[o]1.1676[o]1.1891[o]1.2773[o]1.17461.23911.0866
Δ Step[r]1.15511.13881.02970.9819[s]0.9310[s]1.08740.9479[s]1.1404
Speed–0.98301.00001.58142.16502.60273.03883.61354.61545.42116.71747.2987
Δ Speed0.98301.00000.58140.58360.4377[t]0.4360[t]0.57471.00190.8058[t]1.29620.5814[t]
Specific
Torque[u]
–4.4953
–4.3972
4.5431
4.5069
2.8514
2.8179
2.1061
2.0931
1.7482
1.7357
1.5041
1.4967
1.2644
1.2579
1.00000.8466
0.8442
0.6818
0.6791
0.6276
0.6252
Efficiency
ηn{\displaystyle \eta _{n}}[u]
0.9575
0.9366
0.9843
0.9765
0.9770
0.9655
0.9879
0.9818
0.9858
0.9788
0.9903
0.9854
0.9899
0.9848
1.00000.9944
0.9916
0.9923
0.9883
0.9926
0.9888
GM 10L 1000
(Allison)
1,400 N⋅m (1,033 lb⋅ft) · 2020[12]53
103
53
91
65
103
26
92
2
4
7.1817
7.1817
1.6935
1.2449[o]
Gear
Ratio
−4.5448
553,007121,680{\displaystyle -{\tfrac {553,007}{121,680}}}
4.5385
5913{\displaystyle {\tfrac {59}{13}}}
2.8681[s]
413144{\displaystyle {\tfrac {413}{144}}}
2.0609
4,6022,233{\displaystyle {\tfrac {4,602}{2,233}}}
1.7153[o][t]
247144{\displaystyle {\tfrac {247}{144}}}
1.4817[o][s][t]
14,5739,835{\displaystyle {\tfrac {14,573}{9,835}}}
1.2583[o][s]
57,70245,857{\displaystyle {\tfrac {57,702}{45,857}}}
1.0000[o]
11{\displaystyle {\tfrac {1}{1}}}
0.8506[s][t]
34,69240,787{\displaystyle {\tfrac {34,692}{40,787}}}
0.6877
5,3697,807{\displaystyle {\tfrac {5,369}{7,807}}}
0.6319[t]
91144{\displaystyle {\tfrac {91}{144}}}
Step1.00141.00001.58241.39161.2015[o]1.1576[o]1.1776[o]1.2583[o]1.17571.23681.0883
Δ Step[r]1.1371[s]1.15831.03790.9830[s]0.9358[s]1.07030.9506[s]1.1365
Speed–0.99861.00001.58242.20222.64593.06293.60684.53865.33586.59937.1817
Δ Speed0.99861.00000.58240.61980.4437[t]0.4170[t]0.54390.93170.7974[t]1.26350.5824[t]
Specific
Torque[u]
–4.3517
–4.2569
4.4677
4.4323
2.8023
2.7694
2.0362
2.0239
1.6920
1.6805
1.4679
1.4610
1.2459
1.2396
1.00000.8458
0.8434
0.6824
0.6797
0.6272
0.6248
Efficiency
ηn{\displaystyle \eta _{n}}[u]
0.9575
0.9366
0.9844
0.9766
0.9771
0.9656
0.9880
0.9820
0.9865
0.9797
0.9907
0.9860
0.9902
0.9852
1.00000.9944
0.9915
0.9923
0.9883
0.9925
0.9887
Ford 10R 60600 N⋅m (443 lb⋅ft) · 2020[13]45
95
51
89[10]
73
119
28
104
2
4
7.4157
7.4157
1.7312
1.2493[o]
Gear
Ratio
−4.8854
49,92910,220{\displaystyle -{\tfrac {49,929}{10,220}}}
4.7143
337{\displaystyle {\tfrac {33}{7}}}
2.9969[s]
2,937980{\displaystyle {\tfrac {2,937}{980}}}
2.1488
462215{\displaystyle {\tfrac {462}{215}}}
1.7690[o][t]
743420{\displaystyle {\tfrac {743}{420}}}
1.5209[o][s][t]
24,51916,121{\displaystyle {\tfrac {24,519}{16,121}}}
1.2755[o][s]
1,419,1981,112,671{\displaystyle {\tfrac {1,419,198}{1,112,671}}}
1.0000[o]
11{\displaystyle {\tfrac {1}{1}}}
0.8535[s][t]
93,984110,117{\displaystyle {\tfrac {93,984}{110,117}}}
0.6890
9791,421{\displaystyle {\tfrac {979}{1,421}}}
0.6357[t]
89140{\displaystyle {\tfrac {89}{140}}}
Step1.03631.00001.57301.39471.2147[o]1.1631[o]1.1924[o]1.2755[o]1.17171.23891.0837
Δ Step[r]1.1279[s]1.14821.04430.9754[s]0.9349[s]1.08860.9458[s]1.1431
Speed–0.96501.00001.57302.19792.66483.09963.69614.71435.52356.81437.4157
Δ Speed0.96501.00000.57300.62080.4710[t]0.4347[t]0.59651.01820.8092[t]1.31920.5730[t]
Specific
Torque[u]
–4.6775
–4.5753
4.6400
4.6029
2.9279
2.8935
2.1227
2.1096
1.7440
1.7316
1.5062
1.4989
1.2627
1.2563
1.00000.8488
0.8464
0.6837
0.6810
0.6310
0.6286
Efficiency
ηn{\displaystyle \eta _{n}}[u]
0.9574
0.9365
0.9842
0.9764
0.9770
0.9655
0.9878
0.9818
0.9858
0.9788
0.9903
0.9855
0.9900
0.9850
1.00000.9945
0.9917
0.9924
0.9885
0.9926
0.9889
Actuated Shift Elements[w]
Brake A[x]
Brake B[y]
Clutch C[z]
Clutch D[aa](❶)
Clutch E[ab]
Clutch F[ac]
Gears UsingZF 8HP Logic And New Gears
ZF 8HPR12345678
10R & 10LNew1234NewNew7NewNew10
Geometric Ratios
Ratio
R–2 & 10
Ordinary[ad]
Elementary
Noted[ae]
iR=R2R3(S4+R4)S3S4(S2+R2){\displaystyle i_{R}=-{\frac {R_{2}R_{3}(S_{4}+R_{4})}{S_{3}S_{4}(S_{2}+R_{2})}}}i1=S4+R4S4{\displaystyle i_{1}={\frac {S_{4}+R_{4}}{S_{4}}}}i2=R2(S4+R4)S4(S2+R2){\displaystyle i_{2}={\frac {R_{2}(S_{4}+R_{4})}{S_{4}(S_{2}+R_{2})}}}i10=R2S2+R2{\displaystyle i_{10}={\frac {R_{2}}{S_{2}+R_{2}}}}
iR=1+R4S4(1+S2R2)S3R3{\displaystyle i_{R}=-{\tfrac {1+{\tfrac {R_{4}}{S_{4}}}}{\left(1+{\tfrac {S_{2}}{R_{2}}}\right){\tfrac {S_{3}}{R_{3}}}}}}i1=1+R4S4{\displaystyle i_{1}=1+{\tfrac {R_{4}}{S_{4}}}}i2=1+R4S41+S2R2{\displaystyle i_{2}={\tfrac {1+{\tfrac {R_{4}}{S_{4}}}}{1+{\tfrac {S_{2}}{R_{2}}}}}}i10=11+S2R2{\displaystyle i_{10}={\tfrac {1}{1+{\tfrac {S_{2}}{R_{2}}}}}}
Ratio
3–4 & 9
Ordinary[ad]
Elementary
Noted[ae]
i3=(S1+R1)(S4+R4)S1(S4+R4)+S4R1{\displaystyle i_{3}={\frac {(S_{1}+R_{1})(S_{4}+R_{4})}{S_{1}(S_{4}+R_{4})+S_{4}R_{1}}}}i4=1+S2R1S1(S2+R2){\displaystyle i_{4}=1+{\frac {S_{2}R_{1}}{S_{1}(S_{2}+R_{2})}}}i9=R2(S4+R4)R2(S4+R4)+S2R4{\displaystyle i_{9}={\frac {R_{2}(S_{4}+R_{4})}{R_{2}(S_{4}+R_{4})+S_{2}R_{4}}}}
i3=111+R1S1+1(1+S1R1)(1+R4S4){\displaystyle i_{3}={\tfrac {1}{{\tfrac {1}{1+{\tfrac {R_{1}}{S_{1}}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}\right)\left(1+{\tfrac {R_{4}}{S_{4}}}\right)}}}}}i4=1+R1S11+R2S2{\displaystyle i_{4}=1+{\tfrac {\tfrac {R_{1}}{S_{1}}}{1+{\tfrac {R_{2}}{S_{2}}}}}}i9=11+S2R21+S4R4{\displaystyle i_{9}={\tfrac {1}{1+{\tfrac {\tfrac {S_{2}}{R_{2}}}{1+{\tfrac {S_{4}}{R_{4}}}}}}}}
Ratio
5 & 8
Elementary
Noted[ae]
i5=(S1(S2+R2)+R1S2)(S4+R4)S1(S2+R2)(S4+R4)+R1S2S4{\displaystyle i_{5}={\frac {(S_{1}(S_{2}+R_{2})+R_{1}S_{2})(S_{4}+R_{4})}{S_{1}(S_{2}+R_{2})(S_{4}+R_{4})+R_{1}S_{2}S_{4}}}}i8=R2(S3+R3)(S4+R4)R2(S3+R3)(S4+R4)+S2S3R4{\displaystyle i_{8}={\frac {R_{2}(S_{3}+R_{3})(S_{4}+R_{4})}{R_{2}(S_{3}+R_{3})(S_{4}+R_{4})+S_{2}S_{3}R_{4}}}}
i5=111+R1S11+R2S2+1(1+S1R1(1+R2S2))(1+R4S4){\displaystyle i_{5}={\tfrac {1}{{\tfrac {1}{1+{\tfrac {\tfrac {R_{1}}{S_{1}}}{1+{\tfrac {R_{2}}{S_{2}}}}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}\left(1+{\tfrac {R_{2}}{S_{2}}}\right)\right)\left(1+{\tfrac {R_{4}}{S_{4}}}\right)}}}}}i8=11+1R2S2(1+R3S3)(1+S4R4){\displaystyle i_{8}={\tfrac {1}{1+{\tfrac {1}{{\tfrac {R_{2}}{S_{2}}}\left(1+{\tfrac {R_{3}}{S_{3}}}\right)\left(1+{\tfrac {S_{4}}{R_{4}}}\right)}}}}}
Ratio
6 & 7
Ordinary[ad]
Elementary
Noted[ae]
i6=(S1R2(S3+R3)+S2S3(S1+R1))(S4+R4)(S1R2(S3+R3)+S1S2S3)(S4+R4)+R1S2S3S4{\displaystyle i_{6}={\frac {(S_{1}R_{2}(S_{3}+R_{3})+S_{2}S_{3}(S_{1}+R_{1}))(S_{4}+R_{4})}{(S_{1}R_{2}(S_{3}+R_{3})+S_{1}S_{2}S_{3})(S_{4}+R_{4})+R_{1}S_{2}S_{3}S_{4}}}}i7=11{\displaystyle i_{7}={\frac {1}{1}}}
i6=11+S2R21+R3S3(1+R1S11+R4S4)+11+R2S2(1+R3S3)1+R1S1+1(1+S1R1)(1+R4S4){\displaystyle i_{6}={\tfrac {1}{1+{\tfrac {\tfrac {S_{2}}{R_{2}}}{1+{\tfrac {R_{3}}{S_{3}}}}}\left(1+{\tfrac {\tfrac {R_{1}}{S_{1}}}{1+{\tfrac {R_{4}}{S_{4}}}}}\right)}}+{\tfrac {1}{{\tfrac {1+{\tfrac {R_{2}}{S_{2}}}\left(1+{\tfrac {R_{3}}{S_{3}}}\right)}{1+{\tfrac {R_{1}}{S_{1}}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}\right)\left(1+{\tfrac {R_{4}}{S_{4}}}\right)}}}}}
Kinetic Ratios
Specific
Torque[u]
R–2 & 10
T2;RT1;R=1+R4S4η0(1+S2R21η0)S3R31η0{\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}=-{\tfrac {1+{\tfrac {R_{4}}{S_{4}}}\eta _{0}}{\left(1+{\tfrac {S_{2}}{R_{2}}}\cdot {\tfrac {1}{\eta _{0}}}\right){\tfrac {S_{3}}{R_{3}}}\cdot {\tfrac {1}{\eta _{0}}}}}}T2;1T1;1=1+R4S4η0{\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}=1+{\tfrac {R_{4}}{S_{4}}}\eta _{0}}T2;2T1;2=1+R4S4η01+S2R21η0{\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}={\tfrac {1+{\tfrac {R_{4}}{S_{4}}}\eta _{0}}{1+{\tfrac {S_{2}}{R_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}}}T2;10T1;10=11+S2R21η0{\displaystyle {\tfrac {T_{2;10}}{T_{1;10}}}={\tfrac {1}{1+{\tfrac {S_{2}}{R_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}}}
Specific
Torque[u]
3–4 & 9
T2;3T1;3=111+R1S1η012+1(1+S1R1η012)(1+R4S4η0){\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}={\tfrac {1}{{\tfrac {1}{1+{\tfrac {R_{1}}{S_{1}}}{\eta _{0}}^{\tfrac {1}{2}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}{\eta _{0}}^{\tfrac {1}{2}}\right)\left(1+{\tfrac {R_{4}}{S_{4}}}\eta _{0}\right)}}}}}T2;4T1;4=1+R1S1η01+R2S21η0{\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}=1+{\tfrac {{\tfrac {R_{1}}{S_{1}}}\eta _{0}}{1+{\tfrac {R_{2}}{S_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}}}T2;9T1;9=11+S2R21η01+S4R4η0{\displaystyle {\tfrac {T_{2;9}}{T_{1;9}}}={\tfrac {1}{1+{\tfrac {{\tfrac {S_{2}}{R_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}{1+{\tfrac {S_{4}}{R_{4}}}\eta _{0}}}}}}
Specific
Torque[u]
5 & 8
T2;5T1;5=111+R1S1η0121+R2S21η012+1(1+S1R1η012(1+R2S2η012))(1+R4S4η0){\displaystyle {\tfrac {T_{2;5}}{T_{1;5}}}={\tfrac {1}{{\tfrac {1}{1+{\tfrac {{\tfrac {R_{1}}{S_{1}}}{\eta _{0}}^{\tfrac {1}{2}}}{1+{\tfrac {R_{2}}{S_{2}}}\cdot {\tfrac {1}{{\eta _{0}}^{\tfrac {1}{2}}}}}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}{\eta _{0}}^{\tfrac {1}{2}}\left(1+{\tfrac {R_{2}}{S_{2}}}{\eta _{0}}^{\tfrac {1}{2}}\right)\right)\left(1+{\tfrac {R_{4}}{S_{4}}}\eta _{0}\right)}}}}}T2;8T1;8=11+1R2S2η0(1+R3S3η0)(1+S4R4η0){\displaystyle {\tfrac {T_{2;8}}{T_{1;8}}}={\tfrac {1}{1+{\tfrac {1}{{\tfrac {R_{2}}{S_{2}}}\eta _{0}\left(1+{\tfrac {R_{3}}{S_{3}}}\eta _{0}\right)\left(1+{\tfrac {S_{4}}{R_{4}}}\eta _{0}\right)}}}}}
Specific
Torque[u]
6 & 7
T2;6T1;6=11+S2R21η0121+R3S3η012(1+R1S11η0131+R4S4η012)+11+R2S21η012(1+R3S31η012)1+R1S1η013+1(1+S1R1η013)(1+R4S4η012){\displaystyle {\tfrac {T_{2;6}}{T_{1;6}}}={\tfrac {1}{1+{\tfrac {{\tfrac {S_{2}}{R_{2}}}\cdot {\tfrac {1}{{\eta _{0}}^{\tfrac {1}{2}}}}}{1+{\tfrac {R_{3}}{S_{3}}}{\eta _{0}}^{\tfrac {1}{2}}}}\left(1+{\tfrac {{\tfrac {R_{1}}{S_{1}}}\cdot {\tfrac {1}{{\eta _{0}}^{\tfrac {1}{3}}}}}{1+{\tfrac {R_{4}}{S_{4}}}{\eta _{0}}^{\tfrac {1}{2}}}}\right)}}+{\tfrac {1}{{\tfrac {1+{\tfrac {R_{2}}{S_{2}}}\cdot {\tfrac {1}{{\eta _{0}}^{\tfrac {1}{2}}}}\left(1+{\tfrac {R_{3}}{S_{3}}}\cdot {\tfrac {1}{{\eta _{0}}^{\tfrac {1}{2}}}}\right)}{1+{\tfrac {R_{1}}{S_{1}}}{\eta _{0}}^{\tfrac {1}{3}}}}+{\tfrac {1}{\left(1+{\tfrac {S_{1}}{R_{1}}}{\eta _{0}}^{\tfrac {1}{3}}\right)\left(1+{\tfrac {R_{4}}{S_{4}}}{\eta _{0}}^{\tfrac {1}{2}}\right)}}}}}T2;7T1;7=11{\displaystyle {\tfrac {T_{2;7}}{T_{1;7}}}={\tfrac {1}{1}}}
  1. ^Revised 14 October 2025
  2. ^Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input shafts areC2 (planetary gear carrier of gearset 2) and, if actuated,R3 andS4
    • Output shaft isC4 (planetary gear carrier of gearset 4)
  3. ^Total Ratio Span (Total Gear/Transmission Ratio) Nominal
    • i1in{\displaystyle {\tfrac {i_{1}}{i_{n}}}}
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  4. ^Total Ratio Span (Total Gear/Transmission Ratio) Effective
  5. ^Ratio Span's Center
  6. ^Average Gear Step
  7. ^Sun 1: sun gear of gearset 1
  8. ^Ring 1: ring gear of gearset 1
  9. ^Sun 2: sun gear of gearset 2
  10. ^Ring 2: ring gear of gearset 2
  11. ^Sun 3: sun gear of gearset 3
  12. ^Ring 3: ring gear of gearset 3
  13. ^Sun 4: sun gear of gearset 4
  14. ^Ring 4: ring gear of gearset 4
  15. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalStandard 50:50
    — 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted lineStep)
    • and a particularly large step from 1st to 2nd gear
      • thelower half of the gear steps (between the small gears; rounded down, here the first 4)is always larger
      • and theupper half of the gear steps (between the large gears; rounded up, here the last 5)is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half:smaller gear steps are a waste of possible ratios (red bold)
    • upper half:larger gear steps are unsatisfactory (red bold)
  16. ^Standard R:1
    — Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  17. ^Standard 1:2
    — Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked lineStep)
    • thelargest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667 : 1 (5 : 3) is good
      • Up to 1.7500 : 1 (7 : 4) is acceptable (red)
      • Above is unsatisfactory (bold)
  18. ^abcdeFrom large to small gears (from right to left)
  19. ^abcdefghijklmnopqrstuvwxyzaaabacadaeStandard STEP
    — From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted lineΔ Step) is always greater than 1
      • Asprogressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  20. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagStandard SPEED
    — From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in greenΔ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  21. ^abcdefghijklmnSpecific Torque Ratio And Efficiency
    • The specific torque is the Ratio of
    • Theefficiency is calculated from the specific torque in relation to the transmission ratio
    • Power loss for single meshing gears is in the range of 1 % to 1.5 %
      • helical gear pairs, which are used to reduce noise in passenger cars, are in the upper part of the loss range
      • spur gear pairs, which are limited to commercial vehicles due to their poorer noise comfort, are in the lower part of the loss range
  22. ^abcdefghijkCorridor for specific torque and efficiency
  23. ^Permanentlycoupled elements
    • S1 andS2
    • C1 (carrier 1) andR4
    • R2 andS3
    • R3 andS4
  24. ^Blockss1
  25. ^BlocksR1
  26. ^CouplesR2 andS3 with the dedicated intermediate shaft
  27. ^CouplesC3 (carrier 3) with the dedicated intermediate shaft
  28. ^CouplesR3 andS4 with the input shaft
  29. ^CouplesC1 (carrier 1) andR4 with the dedicated intermediate shaft
  30. ^abcOrdinary Noted
    • For direct determination of the ratio
  31. ^abcdElementary Noted
    • Alternative representation for determining the transmission ratio
    • Contains only operands
      • With simple fractions of both central gears of a planetary gearset
      • Or with the value 1
    • As a basis
      • For reliable
      • And traceable
    • Determination of specific torque and efficiency

Applications

[edit]

Ford

[edit]

10R 60

[edit]

10R 80 MHT

[edit]

10R 80

[edit]

10R 100

[edit]
  • 2023–presentFord Super Duty
    • Marketed as TorqShift-G
    • 6.8L Gasoline engine only
    • non-Tremor 7.3L Gasoline on 2025-present

10R 140

[edit]
  • 2020–presentFord Super Duty
    • Marketed as TorqShift
    • 6.7L Diesel and 7.3L Gasoline on 2023-2024
    • Tremor 7.3L Gasoline on 2025-present

General Motors

[edit]

Source[14]

10L 60

[edit]

10L 80 MF6

[edit]

10L 90 MX0

[edit]

10L 1000 (Allison) MGM · MGU

[edit]

Lawsuits

[edit]

At least five class action lawsuits have been filed regarding vehicles equipped with Ford's 10R 80 transmission.[16][17][18][19][20] Several have since been consolidated to a single case being heard in Illinois.[19] The lawsuits allege safety issues due to harsh and erratic shifting, which causes jerking, lunging, clunking and hesitation between gears.[17][19] At least one case also cites sudden loss of power due to transmission issues.[17] It is also alleged that Ford is aware of these issues and re-designed the CDF hub inner sleeve along with publishing several TSBs related to the concern.

McCabe v. Ford Motor Company cites 38 different NHTSA complaints regarding the 10R 80 transmission. The complaints encompass the 2019–2022 Ford Ranger, 2018–2021 Ford Expedition, 2018–2022 Ford Mustang, 2018–2021 Lincoln Navigator, and 2021 Ford F-150.[17]

Some of the lawsuits have been dismissed or partially dismissed.[21][22] As of October 2023, at least one of these lawsuits is still ongoing.

References

[edit]
  1. ^"Ford and GM finally consummate 9- and 10-speed joint development - SAE International".articles.sae.org. Archived fromthe original on 2018-03-25. Retrieved2018-03-24.
  2. ^"Timur Apakidze · Exclusive: An Inside Look At Ford's New 10 Speed Transmission".TTAC · The Truth About Cars. 2014-12-01. Retrieved2018-03-24.
  3. ^Martinez, Michael (20 April 2018)."No thanks, Ford says to 9-speed offered by GM".Automotive News. Retrieved8 July 2019.
  4. ^Tracy, David (23 April 2018)."Why Ford Isn't Using GM's Nine-Speed Automatic Transmission".Jalopnik. Retrieved8 July 2019.
  5. ^Ford 10R80, GM 10L80 10 Speed Transmission - 10R80, 10L80 10 Speed Automatic Transmission Specs
  6. ^Game of chicken: GM bets on Mexican-made pickup trucks
  7. ^"New Programs Update May 2017".@FordOnline. Ford. Archived fromthe original on 23 November 2018. Retrieved10 March 2019.
  8. ^"Holy Shift! A Look inside GM's new 10-Speed Automatic - Advanced design, GM control system support capability, enhanced efficiency".media.gm.com. May 11, 2016. Archived fromthe original on 2016-05-17.
  9. ^"F150Hub: Ford 10R80 Automatic Transmission Specs, Ratios". Retrieved15 July 2019.
  10. ^abc"Timur Apakidze · Saturation Dive: Ford 10 Speed Transmission Power Flow".TTAC · The Truth About Cars. 2014-12-23. Retrieved2024-01-25.
  11. ^"F450-XL Hub: Ford 10R140 Automatic Transmission Specs 2020, Ratios". Retrieved5 June 2020.
  12. ^"GMC Sierra HD Specs 2020, Ratios". Retrieved7 June 2020.
  13. ^"Ford Explorer Specs 2020, Ratios"(PDF). Retrieved18 June 2023.
  14. ^"GM Global Propulsion Systems – USA Information Guide Model Year 2018"(PDF). General Motors Powertrain. Archived fromthe original(PDF) on 7 February 2019. Retrieved6 February 2019.
  15. ^https://web.archive.org/web/20230512213219/https://i.imgur.com/S9il0A8.png[bare URL image file]
  16. ^https://www.courthousenews.com/wp-content/uploads/2020/01/FordCA.pdf. Smith v. Ford Motor Company. Case 5:20-cv-00211. Document 1. Retrieved 27 October 2023.
  17. ^abcdhttps://www.classaction.org/media/mccabe-v-ford-motor-company.pdf. McCabe v. Ford Motor Company. Case 1:23-cv-10829. Document 1. Retrieved 27 October 2023.
  18. ^https://www.govinfo.gov/content/pkg/USCOURTS-paed-2_20-cv-00247/pdf/USCOURTS-paed-2_20-cv-00247-0.pdf. Orndorff v Ford Motor Company. Case 2:20-cv-00247-KSM. Document 13. Retrieved 27 October 2023.
  19. ^abchttps://app.ediscoveryassistant.com/case_law/51364-o-connor-v-ford-motor-co. O'Connor v Ford Motor Co. Case 1:19-cv-05045. Document Filed: July 20, 2023. Retrieved 27 October 2023.
  20. ^https://www.classaction.org/media/o-connor-v-ford-motor-company.pdf. O'Connor v Ford Motor Co. Case 1:19-cv-05045.Document 7. Filed 8 August 2019. Retrieved 27 October 2023.
  21. ^Foote, Brett (17 November 2020)."FORD F-150 10R 80 TRANSMISSION LAWSUIT DISMISSED IN ILLINOIS SUPREME COURT".Ford Authority. Retrieved27 October 2023.
  22. ^Foote, Brett (8 November 2021)."FORD F-150 10R80 TRANSMISSION LAWSUIT SURVIVES PARTIAL DISMISSAL".Ford Authority.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ford–GM_10-speed_automatic_transmission&oldid=1323522440"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp