Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fluoroantimonic acid

From Wikipedia, the free encyclopedia
Chemical compound
Fluoroantimonic acid
Fluoroantimonic acid stored in a PFA bottle
Names
IUPAC name
Fluoroantimonic acid
Systematic IUPAC name
Hexafluoroantimonic acid
Other names
  • Fluoroantimonic(V) acid
  • Hydrogen Fluoroantimonate
  • Hydrogen Hexafluoroantimonate
  • Fluoronium Fluoroantimonate
  • Fluoronium Hexafluoroantimonate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.037.279Edit this at Wikidata
EC Number
  • 241-023-8
  • InChI=1S/FH2.6FH.Sb/h1H2;6*1H;/q+1;;;;;;;+5/p-6 ☒N
    Key: HBGBSIVYTBPVEU-UHFFFAOYSA-H ☒N
  • [FH2+].F[Sb-](F)(F)(F)(F)F
Properties
Molar mass236.756 g/mol
AppearanceColorless liquid
Density2.885 g/cm3
Boiling point40 °C (104 °F; 313 K) (decomposes)
soluble
Solubility insulfuryl chloride fluoridesoluble
Solubility insulfur dioxidesoluble
Vapor pressure19 hPa (18 °C (64 °F; 291 K))
Hazards[1]
GHS labelling:[2]
GHS05: CorrosiveGHS06: ToxicGHS09: Environmental hazard
Danger
H300+H310+H330,H314,H411
P260,P262,P264,P270,P271,P273,P280,P284,P301+P310+P330,P301+P330+P331,P302+P350,P303+P361+P353,P304+P340+P310,P305+P351+P338+P310,P362,P391,P403+P233,P405,P501
NFPA 704 (fire diamond)
0.5 mg/m3 (TWA)
NIOSH (US health exposure limits):[2]
PEL (Permissible)
0.5 mg/m3
REL (Recommended)
0.5 mg/m3 (TWA)
Related compounds
Relatedacids
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Fluoroantimonic acid is a mixture ofhydrogen fluoride andantimony pentafluoride, containing various cations and anions, the simplest beingfluoronium (H2F+ andFluoroantimonate (SbF6]]). The mixture is the strongest knownsuperacid, stronger than puresulfuric acid by many orders of magnitude, according to itsHammett acidity function. It evenprotonates somehydro­carbons to afford pentacoordinatecarbo­cations (carbonium ions).[3] Like its precursorhydrogen fluoride, it attacks glass, but can be stored in containers lined withPTFE (Teflon) orPFA.[citation needed]

Chemical composition

[edit]

Fluoroantimonic acid is formed by combininghydrogen fluoride andantimony pentafluoride:

SbF5 + 2 HF ⇌ SbF6 + H2F+

The speciation (i.e., the inventory of components) of fluoroantimonic acid is complex. Spectroscopic measurements show that fluoroantimonic acid consists of a mixture of HF-solvated protons,[(HF)nH]+ (such asH3F+2), andSbF5-adducts of fluoride,[(SbF5)nF] (such asSb4F21). Thus, the formula "[H2F]+[SbF6]" is a convenient but oversimplified approximation of the true composition.[4]

Nevertheless, the extreme acidity of this mixture is evident from the inferior proton-accepting ability of the species present in solution. Hydrogen fluoride, a weak acid in aqueous solution that is normally not thought to have any appreciableBrønsted basicity at all, is in fact the strongest Brønsted base in the mixture, protonating toH2F+ in the same way water protonates toH3O+ in aqueous acid. It is the fluoronium ion that accounts for fluoroantimonic acid's extreme acidity. The protons easily migrate through the solution, moving fromH2F+ to HF, when present, by theGrotthuss mechanism.[5]

Two related products have been crystallized fromHF−SbF5 mixtures, and both have been analyzed by single crystalX-ray crystallography. These salts have the formulas[H2F+] [Sb2F11] and[H3F+2] [Sb2F11]. In both salts, the anion isSb2F11. As mentioned above,SbF6 is weakly basic; the larger anionSb2F11 is expected to be a still weaker base.[6]

Acidity

[edit]

Fluoroantimonic acid is the strongestsuperacid based on the measured value of itsHammett acidity function (H0), which has been determined for various ratios of HF:SbF5. TheH0 of HF is−15.1±0.1 (Instead of around -11 as previously determined) Gillespie et al. accurately measured the Hammett acidity of a series of pentafluorides in anhydrous hydrogen fluoride in 1988, demonstrating that the anhydrous hydrogen fluoride solution of pentafluoride (i.e. "fluoroantimonic acid") has stronger acidity than thefluorosulfonic acid solution.[7] Solutions of HF haveH0 values ranging from−20 to−22±1 as the molar percentage ofSbF5 rises from1% to over50%. The lowest attainedH0 is about −28 (although some sources have reported values below −31.)[8][9]

The followingH0 values provide a comparison to other superacids.[10]

Acidities of selected superacids[a]
CompoundH0 (high value)H0 (low value)
Fluoroantimonic acid−23−28
Magic acid−23
Carborane acid−18-
Fluorosulfuric acid−15
Triflic acid−15
Perchloric acid−13
  1. ^Increased acidity is indicated by lower (in this case, more negative) values ofH0.

Of the above, only thecarborane acids, whoseH0 could not be directly determined due to their high melting points, may be stronger acids than fluoroantimonic acid.[10][11]

TheH0 value measures the protonating ability of the bulk, liquid acid, and this value has been directly determined or estimated for various compositions of the mixture. The pKa on the other hand, measures the equilibrium of proton dissociation of a discrete chemical species when dissolved in a particular solvent. Since fluoroantimonic acid is not a single chemical species, its pKa value is not well-defined.[citation needed]

Thegas-phase acidity (GPA) of individual species present in the mixture have been calculated using density functional theory methods.[4] (Solution-phase pKas of these species can, in principle, be estimated by taking into account solvation energies, but do not appear to be reported in the literature as of 2019.) For example, the ion-pair[H2F]+·[SbF6] was estimated to have a GPA of 1,060 kJ/mol. For comparison, the commonly encountered superacidtriflic acid, TfOH, is a substantially weaker acid by this measure, with a GPA of 1,250 kJ/mol.[12] However, certaincarborane superacids have GPAs lower than that of[H2F]+·[SbF6]. For example,H(CHB11Cl11) has an experimentally determined GPA of 1,010 kJ/mol.[13]

Reactions

[edit]

Fluoroantimonic acid solution is so reactive that it is challenging to identify media where it is unreactive. Materials compatible as solvents for fluoroantimonic acid includesulfuryl chloride fluoride (SO2ClF), andsulfur dioxide (SO2); somechlorofluorocarbons have also been used. Containers forHF−SbF5 are made ofPTFE.[citation needed]

Fluoroantimonic acid solutions decompose when heated, generating freehydrogen fluoride gas and liquidantimony pentafluoride at a temperature of 40 °C (104 °F).[citation needed]

As asuperacid, fluoroantimonic acid solutions protonate nearly allorganic compounds, often causing dehydrogenation, or dehydration. In 1967, Bickel and Hogeveen showed that2HF·SbF5 reacts withisobutane andneopentane to formcarbenium ions:[14][15]

(CH3)3CH + H+ → (CH3)3C+ + H2
(CH3)4C + H+ → (CH3)3C+ + CH4

It is also used in the synthesis oftetraxenonogold complexes.[16]

Safety

[edit]

HF−SbF5 is a highly corrosive substance that reacts violently with water. Heating it is dangerous as well, as it decomposes into toxichydrogen fluoride.

See also

[edit]

References

[edit]
  1. ^ab"SDS - Hydrogen hexafluoroantimonate(V), ca 65% aqueous solution".fishersci.com. ThermoFisher Scientific. 1 April 2024. Retrieved7 November 2025.
  2. ^abSigma-Aldrich Co.,Fluoroantimonic acid.
  3. ^Olah, G. A. (2001).A Life of Magic Chemistry: Autobiographical Reflections of a Nobel Prize Winner.John Wiley and Sons. pp. 100–101.ISBN 978-0-471-15743-4.
  4. ^abEsteves, Pierre M.; Ramírez-Solís, Alejandro; Mota, Claudio J. A. (March 2002). "The Nature of Superacid Electrophilic Species in HF/SbF5: A Density Functional Theory Study".Journal of the American Chemical Society.124 (11):2672–2677.doi:10.1021/ja011151k.ISSN 0002-7863.PMID 11890818.
  5. ^Klein, Michael L. (October 25, 2000)."Getting the Jump on Superacids"(PDF). Pittsburgh Supercomputing Center (PSC). Archived fromthe original(PDF) on May 31, 2012. Retrieved2012-04-15.
  6. ^Mootz, Dietrich; Bartmann, Klemens (March 1988). "The Fluoronium IonsH
    2
    F+
    andH
    3
    F+
    2
    : Characterization by Crystal Structure Analysis".Angewandte Chemie International Edition.27 (3):391–392.doi:10.1002/anie.198803911.
  7. ^Gillespie, Ronald J.; Liang, Jack. (1988-08-01). "Superacid solutions in hydrogen fluoride".Journal of the American Chemical Society.110 (18):6053–6057.doi:10.1021/ja00226a020.ISSN 0002-7863.
  8. ^Superacid chemistry. Olah, George A. (George Andrew), 1927–2017., Olah, George A. (George Andrew), 1927–2017. (2nd ed.). Hoboken, N.J.: Wiley. 2009.ISBN 9780470421543.OCLC 391334955.{{cite book}}: CS1 maint: others (link)
  9. ^Olah, G. A. (2005). "Crossing Conventional Boundaries in Half a Century of Research".Journal of Organic Chemistry.70 (7):2413–2429.doi:10.1021/jo040285o.PMID 15787527.
  10. ^abGillespie, R. J.; Peel, T. E. (1973-08-01). "Hammett acidity function for some superacid systems. II. Systems sulfuric acid-[fsa], potassium fluorosulfate-[fsa], [fsa]-sulfur trioxide, [fsa]-arsenic pentafluoride, [sfa]-antimony pentafluoride and [fsa]-antimony pentafluoride-sulfur trioxide".Journal of the American Chemical Society.95 (16):5173–5178.doi:10.1021/ja00797a013.ISSN 0002-7863.
  11. ^Olah, G. A.; Prakash, G. K. Surya; Wang, Qi; Li, Xing-ya (15 April 2001). "Hydrogen Fluoride–Antimony(V) Fluoride".Encyclopedia of Reagents for Organic Synthesis. New York:John Wiley and Sons.doi:10.1002/047084289X.rh037m.ISBN 9780470842898.
  12. ^Koppel, Ilmar A.; Burk, Peeter; Koppel, Ivar; Leito, Ivo; Sonoda, Takaaki; Mishima, Masaaki (May 2000). "Gas-Phase Acidities of Some Neutral Brønsted Superacids: A DFT and ab Initio Study".Journal of the American Chemical Society.122 (21):5114–5124.doi:10.1021/ja0000753.ISSN 0002-7863.
  13. ^Meyer, Matthew M.; Wang, Xue-bin; Reed, Christopher A.; Wang, Lai-Sheng; Kass, Steven R. (2009-12-23)."Investigating the Weak to Evaluate the Strong: An Experimental Determination of the Electron Binding Energy of Carborane Anions and the Gas phase Acidity of Carborane Acids".Journal of the American Chemical Society.131 (50):18050–18051.doi:10.1021/ja908964h.ISSN 0002-7863.PMID 19950932.S2CID 30532320.
  14. ^Bickel, A. F.; Gaasbeek, C. J.; Hogeveen, H.; Oelderik, J. M.; Platteeuw, J. C. (1967). "Chemistry and spectroscopy in strongly acidic solutions: reversible reaction between aliphatic carbonium ions and hydrogen".Chemical Communications.1967 (13):634–635.doi:10.1039/C19670000634.
  15. ^Hogeveen, H.; Bickel, A. F. (1967). "Chemistry and spectroscopy in strongly acidic solutions: electrophilic substitution at alkane-carbon by protons".Chemical Communications.1967 (13):635–636.doi:10.1039/C19670000635.
  16. ^Konrad Seppelt, Stefan Seidel; Seppelt, K (2000-10-06). "Xenon as a Complex Ligand: The Tetraxenonogold(II) Cation inAuXe2+
    4
    (Sb
    2
    F
    11
    )
    2
    ".Science.290 (5489):117–118.Bibcode:2000Sci...290..117S.doi:10.1126/science.290.5489.117.PMID 11021792.
Antimonides
Sb(III)
Organoantimony(III) compounds
Sb(III,V)
Sb(V)
Organoantimony(V) compounds
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
PF6,AsF6,SbF6 compounds
AlF2−5,AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6,GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fluoroantimonic_acid&oldid=1323603923"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp