Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fluoride

From Wikipedia, the free encyclopedia
Ion of fluorine
This article is about the fluoride ion. For a review of fluorine compounds, seeCompounds of fluorine. For the fluoride additive used in toothpaste, seeFluoride therapy.
Not to be confused withFloride orFluorite.

Fluoride
Names
IUPAC name
Fluoride[1]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
14905
KEGG
MeSHFluoride
UNII
  • InChI=1S/FH/h1H/p-1 checkY
    Key: KRHYYFGTRYWZRS-UHFFFAOYSA-M checkY
  • [F-]
Properties
F
Molar mass18.998403163 g·mol−1
Conjugate acidHydrogen fluoride
Thermochemistry
145.58 J/mol K (gaseous)[2]
−333 kJ mol−1
Related compounds
Otheranions
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Fluoride (/ˈflʊərd,ˈflɔːr-/)[3] is aninorganic,monatomicanion offluorine, with thechemical formulaF
(also written[F]
), whose salts are typically white or colorless. Fluoride salts typically have distinctive bitter tastes, and are odorless. Its salts and minerals are importantchemical reagents and industrial chemicals, mainly used in the production ofhydrogen fluoride forfluorocarbons. Fluoride is classified as a weak base since it only partially associates in solution, but concentrated fluoride is corrosive and can attack the skin.

Fluoride is the simplest fluorineanion. In terms of charge and size, the fluorideion resembles thehydroxide ion. Fluoride ions occur onEarth in several minerals, particularlyfluorite, but are present only in trace quantities in bodies of water in nature.

Nomenclature

[edit]

Fluorides include compounds that contain ionic fluoride and those in which fluoride does not dissociate. The nomenclature does not distinguish these situations. For example,sulfur hexafluoride andcarbon tetrafluoride are not sources of fluoride ions under ordinary conditions.

The systematic namefluoride, the validIUPAC name, is determined according to the additive nomenclature. However, the namefluoride is also used in compositional IUPAC nomenclature which does not take the nature of bonding involved into account.Fluoride is also used non-systematically, to describe compounds which release fluoride upon dissolving. Hydrogen fluoride is itself an example of a non-systematic name of this nature. However, it is also atrivial name, and thepreferred IUPAC name forfluorane.[citation needed]

Occurrence

[edit]
Fluorite crystals

Fluorine is estimated to be the 13th-mostabundant element in Earth's crust and is widely dispersed in nature, entirely in the form of fluorides. The vast majority is held inmineral deposits, the most commercially important of which isfluorite (CaF2).[4] Natural weathering of some kinds of rocks,[5][6] as well as human activities, releases fluorides into thebiosphere through what is sometimes called thefluorine cycle.

In water

[edit]

Fluoride is naturally present in groundwater,fresh andsaltwater sources, as well as in rainwater, particularly in urban areas exposed to air pollution.[7] Seawater fluoride levels are usually in the range of 0.86 to 1.4 mg/L, and average 1.1 mg/L[8] (milligrams perlitre). For comparison,chloride concentration in seawater is about 19 g/L. The low concentration of fluoride reflects the insolubility of thealkaline earth fluorides, e.g., CaF2.

Concentrations in fresh water vary more significantly.Surface water such as rivers or lakes generally contains between 0.01 and 0.3 mg/L.[9]Groundwater (well water) concentrations vary even more, depending on the presence of local fluoride-containing minerals. For example, natural levels of under 0.05 mg/L have been detected in parts of Canada but up to 8 mg/L in parts of China; in general levels rarely exceed 10 mg/litre[10]

  • In parts of Asia the groundwater can contain dangerously high levels of fluoride, leading to serioushealth problems.[11]
  • Worldwide, 50 million people receive water from water supplies that naturally have close to the "optimal level".[12]
  • In other locations the level of fluoride is very low, sometimes leading tofluoridation of public water supplies to bring the level to around 0.7–1.2 ppm.
  • Mining can increase local fluoride levels[13]

Fluoride can be present in rain, with its concentration increasing significantly upon exposure to volcanic activity[14] or atmospheric pollution derived from burning fossil fuels or other sorts of industry,[15][16] particularlyaluminium smelters.[17]

In plants

[edit]

All vegetation contains some fluoride, which is absorbed from soil and water.[10] Some plants concentrate fluoride from their environment more than others. All tea leaves contain fluoride; however, mature leaves contain as much as 10 to 20 times the fluoride levels of young leaves from the same plant.[18][19][20]

Chemical properties

[edit]

Basicity

[edit]

Fluoride can act as abase. It can combine with aproton (H+):

F + H+ → HF

This neutralization reaction formshydrogen fluoride (HF), theconjugate acid of fluoride.

In aqueous solution, fluoride has apKb value of 10.8. It is therefore aweak base, and tends to remain as the fluoride ion rather than generating a substantial amount of hydrogen fluoride. That is, the following equilibrium favours the left-hand side in water:

F + H2O ⇌ HF + HO

However, upon prolonged contact with moisture, soluble fluoride salts will decompose to their respective hydroxides or oxides, as the hydrogen fluoride escapes. Fluoride is distinct in this regard among the halides. The identity of the solvent can have a dramatic effect on the equilibrium shifting it to the right-hand side, greatly increasing the rate of decomposition.

Structure of fluoride salts

[edit]

Salts containing fluoride are numerous and adopt myriad structures. Typically the fluoride anion is surrounded by four or six cations, as is typical for other halides.Sodium fluoride andsodium chloride adopt the same structure. For compounds containing more than one fluoride per cation, the structures often deviate from those of the chlorides, as illustrated by the main fluoride mineralfluorite (CaF2) where the Ca2+ ions are surrounded by eight F centers. In CaCl2, each Ca2+ ion is surrounded by six Cl centers. The difluorides of the transition metals often adopt therutile structure whereas the dichlorides havecadmium chloride structures.

Inorganic chemistry

[edit]

Upon treatment with a standard acid, fluoride salts convert tohydrogen fluoride and metalsalts. With very strong acids, it can be doubly protonated to giveH
2
F+
. Oxidation of fluoride gives fluorine. Solutions of inorganic fluorides in water contain F andbifluorideHF
2
.[21] Few inorganic fluorides are soluble in water without undergoing significant hydrolysis. In terms of its reactivity, fluoride differs significantly fromchloride and other halides, and is more strongly solvated inprotic solvents due to its smaller radius/charge ratio. Its closest chemical relative ishydroxide, since both have similar geometries.

Naked fluoride

[edit]

Most fluoride salts dissolve to give the bifluoride (HF
2
) anion. Sources of true F anions are rare because the highly basic fluoride anion abstracts protons from many, even adventitious, sources. Relativeunsolvated fluoride, which does exist in aprotic solvents, is called "naked".Naked fluoride is a strongLewis base,[22] and a powerful nucleophile. Some quaternary ammonium salts of naked fluoride includetetramethylammonium fluoride andtetrabutylammonium fluoride.[23]Cobaltocenium fluoride is another example.[24] However, they all lack structural characterization in aprotic solvents. Because of their high basicity, many so-called naked fluoride sources are in fact bifluoride salts. In late 2016imidazolium fluoride was synthesized that is the closest approximation of a thermodynamically stable and structurally characterized example of a "naked" fluoride source in an aprotic solvent (acetonitrile).[25] The sterically demanding imidazolium cation stabilizes the discrete anions and protects them from polymerization.[26][27]

Biochemistry

[edit]

At physiological pHs,hydrogen fluoride is usually fully ionised to fluoride. Inbiochemistry, fluoride and hydrogen fluoride are equivalent. Fluorine, in the form of fluoride, is considered to be amicronutrient for human health, necessary to prevent dental cavities, and to promote healthy bone growth.[28] The tea plant (Camellia sinensis L.) is a known accumulator of fluorine compounds, released upon forming infusions such as the common beverage. The fluorine compounds decompose into products including fluoride ions. Fluoride is the most bioavailable form of fluorine, and as such, tea is potentially a vehicle for fluoride dosing.[29] Approximately, 50% of absorbed fluoride is excreted renally with a twenty-four-hour period. The remainder can be retained in the oral cavity, and lower digestive tract. Fasting dramatically increases the rate of fluoride absorption to near 100%, from a 60% to 80% when taken with food.[29] Per a 2013 study, it was found that consumption of one litre of tea a day, can potentially supply the daily recommended intake of 4 mg per day. Some lower quality brands can supply up to a 120% of this amount. Fasting can increase this to 150%. The study indicates that tea drinking communities are at an increased risk ofdental andskeletal fluorosis, in the case where water fluoridation is in effect.[29] Fluoride ion in low doses in the mouth reduces tooth decay.[30] For this reason, it is used in toothpaste and water fluoridation. At much higher doses and frequent exposure, fluoride causes health complications and can be toxic.

Applications

[edit]
See also:Fluorochemical industry,Biological aspects of fluorine, andFluorine

Fluoride salts and hydrofluoric acid are the main fluorides of industrial value.

Organofluorine chemistry

[edit]
Main article:Organofluorine chemistry

Organofluorine compounds are pervasive. Many drugs, many polymers, refrigerants, and many inorganic compounds are made from fluoride-containing reagents. Often fluorides are converted to hydrogen fluoride, which is a major reagent and precursor to reagents. Hydrofluoric acid and its anhydrous form,hydrogen fluoride, are particularly important.[4]

Production of metals and their compounds

[edit]

The main uses of fluoride, in terms of volume, are in the production of cryolite, Na3AlF6. It is used inaluminium smelting. Formerly, it was mined, but now it is derived from hydrogen fluoride. Fluorite is used on a large scale to separate slag in steel-making. Minedfluorite (CaF2) is a commodity chemical used in steel-making.Uranium hexafluoride is employed in the purification of uranium isotopes.

Cavity prevention

[edit]
Main articles:Fluoride therapy andWater fluoridation
Sodium fluoride sold in tablets for cavity prevention.

Fluoride-containing compounds, such assodium fluoride orsodium monofluorophosphate are used in topical and systemicfluoride therapy for preventingtooth decay. They are used forwater fluoridation and in many products associated withoral hygiene.[31] Originally, sodium fluoride was used to fluoridate water;hexafluorosilicic acid (H2SiF6) and its saltsodium hexafluorosilicate (Na2SiF6) are more commonly used additives, especially in the United States. The fluoridation of water is known to prevent tooth decay[32][33] and is considered by the U.S.Centers for Disease Control and Prevention to be "one of 10 great public health achievements of the 20th century".[34][35] In some countries where large, centralized water systems are uncommon, fluoride is delivered to the populace by fluoridating table salt. Despite medical consensus as to its safety, fluoridation of water has its critics(seeWater fluoridation controversy).[36] Fluoridatedtoothpaste is in common use.Meta-analysis show the efficacy of 500 ppm fluoride in toothpastes.[37][38] However, no beneficial effect can be detected when more than one fluoride source is used for daily oral care.[39][need quotation to verify]

Laboratory reagent

[edit]

Fluoride salts are commonly used in biological assay processing toinhibit the activity ofphosphatases, such asserine/threonine phosphatases.[40] Fluoride mimics thenucleophilichydroxide ion in these enzymes' active sites.[41]Beryllium fluoride andaluminium fluoride are also used as phosphatase inhibitors, since these compounds are structural mimics of thephosphate group and can act as analogues of thetransition state of the reaction.[42][43]

Dietary recommendations

[edit]

The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for some minerals in 1997. Where there was not sufficient information to establish EARs and RDAs, an estimate designated Adequate Intake (AI) was used instead. AIs are typically matched to actual average consumption, with the assumption that there appears to be a need, and that need is met by what people consume. The current AI for women 19 years and older is 3.0 mg/day (includes pregnancy and lactation). The AI for men is 4.0 mg/day. The AI for children ages 1–18 increases from 0.7 to 3.0 mg/day. The major known risk offluoride deficiency appears to be an increased risk of bacteria-caused tooth cavities. As for safety, the IOM sets tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of fluoride the UL is 10 mg/day. Collectively the EARs, RDAs, AIs and ULs are referred to asDietary Reference Intakes (DRIs).[44]

TheEuropean Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL are defined the same as in the United States. For women ages 18 and older the AI is set at 2.9 mg/day (including pregnancy and lactation). For men, the value is 3.4 mg/day. For children ages 1–17 years, the AIs increase with age from 0.6 to 3.2 mg/day. These AIs are comparable to the U.S. AIs.[45] The EFSA reviewed safety evidence and set an adult UL at 7.0 mg/day (lower for children).[46]

For U.S. food and dietary supplement labeling purposes, the amount of a vitamin or mineral in a serving is expressed as a percent of Daily Value (%DV). Although there is information to set Adequate Intake, fluoride does not have a Daily Value and is not required to be shown on food labels.[47]

Estimated daily intake

[edit]

Daily intakes of fluoride can vary significantly according to the various sources of exposure. Values ranging from 0.46 to 3.6–5.4 mg/day have been reported in several studies (IPCS, 1984).[28] In areas where water isfluoridated this can be expected to be a significant source of fluoride, however fluoride is also naturally present in virtually all foods and beverages at a wide range of concentrations.[48] The maximum safe daily consumption of fluoride is 10 mg/day for an adult (U.S.) or 7 mg/day (European Union).[44][46]

The upper limit of fluoride intake from all sources (fluoridated water, food, beverages, fluoride dental products and dietary fluoride supplements) is set at 0.10 mg/kg/day for infants, toddlers, and children through to 8 years old. For older children and adults, who are no longer at risk for dental fluorosis, the upper limit of fluoride is set at 10 mg/day regardless of weight.[49]

Examples of fluoride content
Food/DrinkFluoride
(mg per 1000g/ppm)
PortionFluoride
(mg per portion)
Black tea (brewed)3.731 cup, 240 g (8 fl oz)0.884
Raisins, seedless2.34small box, 43 g (1.5 oz)0.101
Table wine1.53Bottle, 750 mL (26 imp fl oz)1.150
Municipal tap-water,
(Fluoridated)
0.81Recommended daily intake,
3 litres (0.79 US gal)
2.433
Baked potatoes, Russet0.45Medium potato, 140 g (0.31 lb)0.078
Lamb0.32Chop, 170 g (6.0 oz)0.054
Carrots0.031 large carrot, 72 g (2.5 oz)0.002
Source: Data taken from United States Department of Agriculture,National Nutrient DatabaseArchived 2014-03-01 at theWayback Machine[50]

Safety

[edit]
Main article:Fluoride toxicity

Ingestion

[edit]

According to the U.S. Department of Agriculture, the Dietary Reference Intakes, which is the "highest level of daily nutrient intake that is likely to pose no risk of adverse health effects" specify 10 mg/day for most people, corresponding to 10 L of fluoridated water with no risk. For young children the values are smaller, ranging from 0.7 mg/d to 2.2 mg/d for infants.[51] Water and food sources of fluoride include community water fluoridation, seafood, tea, and gelatin.[52]

Soluble fluoride salts, of whichsodium fluoride is the most common, are toxic, and have resulted in both accidental and self-inflicted deaths fromacute poisoning.[4] The lethal dose for most adult humans is estimated at 5 to 10 g (which is equivalent to 32 to 64 mg elemental fluoride per kg body weight).[53][54][55] A case of a fatal poisoning of an adult with 4 grams of sodium fluoride is documented,[56] and a dose of 120 g sodium fluoride has been survived.[57] Forsodium fluorosilicate (Na2SiF6), themedian lethal dose (LD50) orally in rats is 125 mg/kg, corresponding to 12.5 g for a 100 kg adult.[58]

Treatment may involve oral administration of dilutecalcium hydroxide orcalcium chloride to prevent further absorption, and injection ofcalcium gluconate to increase the calcium levels in the blood.[56]Hydrogen fluoride is more dangerous than salts such as NaF because it is corrosive and volatile, and can result in fatal exposure through inhalation or upon contact with the skin; calcium gluconate gel is the usual antidote.[59]

In the higher doses used to treatosteoporosis, sodium fluoride can cause pain in the legs and incomplete stress fractures when the doses are too high; it also irritates the stomach, sometimes so severely as to cause ulcers. Slow-release andenteric-coated versions of sodium fluoride do not have gastric side effects in any significant way, and have milder and less frequent complications in the bones.[60] In the lower doses used forwater fluoridation, the only clear adverse effect isdental fluorosis, which can alter the appearance of children's teeth duringtooth development; this is mostly mild and is unlikely to represent any real effect on aesthetic appearance or on public health.[61] Fluoride was known to enhance bone mineral density at the lumbar spine, but it was not effective for vertebral fractures and provoked more nonvertebral fractures.[62] In areas that have naturally occurring high levels of fluoride ingroundwater which is used fordrinking water, bothdental andskeletal fluorosis can be prevalent and severe.[63]

Hazard maps for fluoride in groundwater

[edit]

Around one-third of the human population drinks water from groundwater resources. Of this, about 10%, approximately 300 million people, obtain water from groundwater resources that are heavily contaminated with arsenic or fluoride.[64] These trace elements derive mainly from minerals.[65] Maps locating potential problematic wells are available.[66]

Topical

[edit]

Concentrated fluoride solutions are corrosive.[67] Gloves made ofnitrile rubber are worn when handling fluoride compounds. The hazards of solutions of fluoride salts depend on the concentration. In the presence ofstrong acids, fluoride salts releasehydrogen fluoride, which is corrosive, especially toward glass.[4]

Other derivatives

[edit]

Organic and inorganic anions are produced from fluoride, including:

See also

[edit]

References

[edit]
  1. ^"Fluorides – PubChem Public Chemical Database".The PubChem Project. USA: National Center for Biotechnology Information. Identification.
  2. ^Chase, M. W. (1998)."Fluorine anion". NIST. pp. 1–1951. Retrieved4 July 2012.
  3. ^Wells, J.C. (2008).Longman pronunciation dictionary (3rd ed.). Harlow, England: Pearson Education Limited/Longman. p. 313.ISBN 978-1-4058-8118-0.. According to this source,/ˈflərd/ is a possible pronunciation in British English.
  4. ^abcdAigueperse, Jean; Mollard, Paul; Devilliers, Didier; Chemla, Marius; Faron, Robert; Romano, René; Cuer, Jean Pierre (2000). "Fluorine Compounds, Inorganic".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a11_307.ISBN 978-3-527-30673-2.
  5. ^Derakhshani, R; Raoof, A; Mahvi, AH; Chatrouz, H (2020). "Similarities in the Fingerprints of Coal Mining Activities, High Ground Water Fluoride, and Dental Fluorosis in Zarand District, Kerman Province, Iran".Fluoride.53 (2):257–267.
  6. ^Derakhshani, R; Tavallaie, M; Malek Mohammad, T; Abbasnejad, A; Haghdoost, A (2014). "Occurrence of fluoride in groundwater of Zarand region, Kerman province, Iran".Fluoride.47 (2):133–138.
  7. ^"Public Health Statement for Fluorides, Hydrogen Fluoride, and Fluorine".ATSDR. September 2003.
  8. ^"Ambient Water Quality Criteria for Fluoride". Government of British Columbia. Archived fromthe original on 24 September 2015. Retrieved8 October 2014.
  9. ^Liteplo, Dr R.; Gomes, R.; Howe, P.; Malcolm, Heath (2002).FLUORIDES - Environmental Health Criteria 227: 1st draft. Geneva: World Health Organization.ISBN 978-92-4-157227-9.
  10. ^abFawell, J.K.; et al."Fluoride in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality"(PDF). World Health Organization. Retrieved6 May 2016.
  11. ^Yadav, Krishna Kumar; Kumar, Sandeep; Pham, Quoc Bao; Gupta, Neha; Rezania, Shahabaldin; Kamyab, Hesam; Yadav, Shalini; Vymazal, Jan; Kumar, Vinit; Tri, Doan Quang; Talaiekhozani, Amirreza; Prasad, Shiv; Reece, Lisa M.; Singh, Neeraja; Maurya, Pradip Kumar; Cho, Jinwoo (October 2019). "Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review".Ecotoxicology and Environmental Safety.182 109362.Bibcode:2019EcoES.18209362Y.doi:10.1016/j.ecoenv.2019.06.045.PMID 31254856.S2CID 195764865.
  12. ^Tiemann, Mary (5 April 2013)."Fluoride in Drinking Water: A Review of Fluoridation and Regulation Issues"(PDF). Congressional Research Service. p. 3. Retrieved6 May 2016.
  13. ^Chandio, Tasawar Ali; Khan, Muhammad Nasiruddin; Muhammad, Maria Taj; Yalcinkaya, Ozcan; Wasim, Agha Arslan; Kayis, Ahmet Furkan (January 2021)."Fluoride and arsenic contamination in drinking water due to mining activities and its impact on local area population".Environmental Science and Pollution Research.28 (2):2355–2368.Bibcode:2021ESPR...28.2355C.doi:10.1007/s11356-020-10575-9.PMID 32880840.S2CID 221463681.
  14. ^Bellomo, Sergio; Aiuppa, Alessandro; D'Alessandro, Walter; Parello, Francesco (August 2007). "Environmental impact of magmatic fluorine emission in the Mt. Etna area".Journal of Volcanology and Geothermal Research.165 (1–2):87–101.Bibcode:2007JVGR..165...87B.doi:10.1016/j.jvolgeores.2007.04.013.
  15. ^Smith, Frank A.; Hodge, Harold C.; Dinman, B. D. (9 January 2009). "Airborne fluorides and man: Part I".CRC Critical Reviews in Environmental Control.8 (1–4):293–371.doi:10.1080/10643387709381665.
  16. ^Smith, Frank A.; Hodge, Harold C.; Dinman, B. D. (9 January 2009). "Airborne fluorides and man: Part II".CRC Critical Reviews in Environmental Control.9 (1):1–25.doi:10.1080/10643387909381666.
  17. ^Arnesen, A.K.M.; Abrahamsen, G.; Sandvik, G.; Krogstad, T. (February 1995). "Aluminium-smelters and fluoride pollution of soil and soil solution in Norway".Science of the Total Environment.163 (1–3):39–53.Bibcode:1995ScTEn.163...39A.doi:10.1016/0048-9697(95)04479-K.
  18. ^Wong MH, Fung KF, Carr HP (2003). "Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications".Toxicology Letters.137 (1–2):111–20.doi:10.1016/S0378-4274(02)00385-5.PMID 12505437.
  19. ^Malinowska E, Inkielewicz I, Czarnowski W, Szefer P (2008). "Assessment of fluoride concentration and daily intake by human from tea and herbal infusions".Food Chem. Toxicol.46 (3):1055–61.doi:10.1016/j.fct.2007.10.039.PMID 18078704.
  20. ^Gardner EJ, Ruxton CH, Leeds AR (2007). "Black tea—helpful or harmful? A review of the evidence".European Journal of Clinical Nutrition.61 (1):3–18.doi:10.1038/sj.ejcn.1602489.PMID 16855537.
  21. ^Wiberg; Holleman, A.F. (2001).Inorganic chemistry (1st English ed., [edited] by Nils Wiberg. ed.). San Diego, Calif. : Berlin: Academic Press, W. de Gruyter.ISBN 978-0-12-352651-9.
  22. ^Schwesinger, Reinhard; Link, Reinhard; Wenzl, Peter; Kossek, Sebastian (2005). "Anhydrous Phosphazenium Fluorides as Sources for Extremely Reactive Fluoride Ions in Solution".Chemistry: A European Journal.12 (2):438–45.doi:10.1002/chem.200500838.PMID 16196062.
  23. ^Haoran Sun & Stephen G. DiMagno (2005). "Anhydrous Tetrabutylammonium Fluoride".Journal of the American Chemical Society.127 (7):2050–1.doi:10.1021/ja0440497.PMID 15713075.
  24. ^Bennett, Brian K.; Harrison, Roger G.; Richmond, Thomas G. (1994). "Cobaltocenium Fluoride: A Novel Source of "Naked" Fluoride Formed by Carbon-Fluorine Bond Activation in a Saturated Perfluorocarbon".Journal of the American Chemical Society.116 (24):11165–11166.doi:10.1021/ja00103a045.
  25. ^Alič, B.; Tavčar, G. (2016). "Reaction of N-heterocyclic carbene (NHC) with different HF sources and ratios – A free fluoride reagent based on imidazolium fluoride".J. Fluorine Chem.192:141–146.doi:10.1016/j.jfluchem.2016.11.004.
  26. ^Alič, B.; Tramšek, M.; Kokalj, A.; Tavčar, G. (2017). "Discrete GeF5– Anion Structurally Characterized with a Readily Synthesized Imidazolium Based Naked Fluoride Reagent".Inorg. Chem.56 (16):10070–10077.doi:10.1021/acs.inorgchem.7b01606.PMID 28792216.
  27. ^Zupanek, Ž.; Tramšek, M.; Kokalj, A.; Tavčar, G. (2018). "Reactivity of VOF3 with N-Heterocyclic Carbene and Imidazolium Fluoride: Analysis of Ligand–VOF3 Bonding with Evidence of a Minute π Back-Donation of Fluoride".Inorg. Chem.57 (21):13866–13879.doi:10.1021/acs.inorgchem.8b02377.PMID 30353729.S2CID 53031199.
  28. ^abFawell, J."Fluoride in Drinking-water"(PDF). World Health Organization. Retrieved10 March 2016.
  29. ^abcChan, Laura; Mehra, Aradhana; Saikat, Sohel; Lynch, Paul (May 2013). "Human exposure assessment of fluoride from tea (Camellia sinensis L.): A UK based issue?".Food Research International.51 (2):564–570.doi:10.1016/j.foodres.2013.01.025.
  30. ^"Fluoride Free Toothpaste – Fluoride (Finally!) Explained". 27 June 2016.
  31. ^McDonagh M. S.; Whiting P. F.; Wilson P. M.; Sutton A. J.; Chestnutt I.; Cooper J.; Misso K.; Bradley M.; Treasure E.; Kleijnen J. (2000)."Systematic review of water fluoridation".British Medical Journal.321 (7265):855–859.doi:10.1136/bmj.321.7265.855.PMC 27492.PMID 11021861.
  32. ^Griffin SO, Regnier E, Griffin PM, Huntley V (2007). "Effectiveness of fluoride in preventing caries in adults".J. Dent. Res.86 (5):410–5.doi:10.1177/154405910708600504.hdl:10945/60693.PMID 17452559.S2CID 58958881.
  33. ^Winston A. E.; Bhaskar S. N. (1 November 1998)."Caries prevention in the 21st century".J. Am. Dent. Assoc.129 (11):1579–87.doi:10.14219/jada.archive.1998.0104.PMID 9818575. Archived fromthe original on 15 July 2012.
  34. ^"Community Water Fluoridation". Centers for Disease Control and Prevention. Retrieved10 March 2016.
  35. ^"Ten Great Public Health Achievements in the 20th Century". Centers for Disease Control and Prevention. Archived fromthe original on 13 March 2016. Retrieved10 March 2016.
  36. ^Newbrun E (1996). "The fluoridation war: a scientific dispute or a religious argument?".Journal of Public Health Dentistry.56 (5 Spec No):246–52.doi:10.1111/j.1752-7325.1996.tb02447.x.PMID 9034969.
  37. ^Walsh, Tanya; Worthington, Helen V.; Glenny, Anne-Marie; Marinho, Valeria Cc; Jeroncic, Ana (4 March 2019)."Fluoride toothpastes of different concentrations for preventing dental caries".Cochrane Database of Systematic Reviews.3 (3) CD007868.doi:10.1002/14651858.CD007868.pub3.ISSN 1469-493X.PMC 6398117.PMID 30829399.
  38. ^"Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations".springermedizin.de (in German). Retrieved24 February 2021.
  39. ^Hausen, H.; Kärkkäinen, S.; Seppä, L. (February 2000). "Application of the high-risk strategy to control dental caries".Community Dentistry and Oral Epidemiology.28 (1):26–34.doi:10.1034/j.1600-0528.2000.280104.x.ISSN 0301-5661.PMID 10634681.
  40. ^Nakai C, Thomas JA (1974)."Properties of a phosphoprotein phosphatase from bovine heart with activity on glycogen synthase, phosphorylase, and histone".J. Biol. Chem.249 (20):6459–67.doi:10.1016/S0021-9258(19)42179-0.PMID 4370977.
  41. ^Schenk G, Elliott TW, Leung E, et al. (2008)."Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle".BMC Struct. Biol.8: 6.doi:10.1186/1472-6807-8-6.PMC 2267794.PMID 18234116.
  42. ^Wang W, Cho HS, Kim R, et al. (2002). "Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic "snapshots" of intermediate states".J. Mol. Biol.319 (2):421–31.doi:10.1016/S0022-2836(02)00324-8.PMID 12051918.
  43. ^Cho H, Wang W, Kim R, et al. (2001)."BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase".Proc. Natl. Acad. Sci. U.S.A.98 (15):8525–30.Bibcode:2001PNAS...98.8525C.doi:10.1073/pnas.131213698.PMC 37469.PMID 11438683.
  44. ^abInstitute of Medicine (1997)."Fluoride".Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. Washington, DC: The National Academies Press. pp. 288–313.doi:10.17226/5776.ISBN 978-0-309-06403-3.PMID 23115811.
  45. ^"Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies"(PDF). 2017.
  46. ^abTolerable Upper Intake Levels For Vitamins And Minerals(PDF), European Food Safety Authority, 2006
  47. ^"Federal Register May 27, 2016 Food Labeling: Revision of the Nutrition and Supplement Facts Labels. FR page 33982"(PDF).
  48. ^"Nutrient Lists". Agricultural Research Service United States Department of Agriculture. Archived fromthe original on 26 May 2014. Retrieved25 May 2014.
  49. ^Levy, Steven M.; Guha-Chowdhury, Nupur (1999). "Total Fluoride Intake and Implications for Dietary Fluoride Supplementation".Journal of Public Health Dentistry.59 (4):211–223.doi:10.1111/j.1752-7325.1999.tb03272.x.PMID 10682326.
  50. ^"Food Composition Databases: Food Search: Fluoride".Agricultural Research Service,United States Department of Agriculture. Archived fromthe original on 5 December 2018. Retrieved5 December 2018.
  51. ^"Dietary Reference Intakes: EAR, RDA, AI, Acceptable Macronutrient Distribution Ranges, and UL". United States Department of Agriculture. Archived fromthe original on 13 February 2015. Retrieved9 September 2017.
  52. ^"Fluoride in diet". U.S. National Library of Medicine. Retrieved10 March 2016.
  53. ^Gosselin, RE; Smith RP; Hodge HC (1984).Clinical toxicology of commercial products. Baltimore (MD): Williams & Wilkins. pp. III–185–93.ISBN 978-0-683-03632-9.
  54. ^Baselt, RC (2008).Disposition of toxic drugs and chemicals in man. Foster City (CA): Biomedical Publications. pp. 636–40.ISBN 978-0-9626523-7-0.
  55. ^IPCS (2002).Environmental health criteria 227 (Fluoride). Geneva: International Programme on Chemical Safety, World Health Organization. p. 100.ISBN 978-92-4-157227-9.
  56. ^abRabinowitch, IM (1945)."Acute Fluoride Poisoning".Canadian Medical Association Journal.52 (4):345–9.PMC 1581810.PMID 20323400.
  57. ^Abukurah AR, Moser AM Jr, Baird CL, Randall RE Jr, Setter JG, Blanke RV (1972). "Acute sodium fluoride poisoning".JAMA.222 (7):816–7.doi:10.1001/jama.1972.03210070046014.PMID 4677934.
  58. ^The Merck Index, 12th edition, Merck & Co., Inc., 1996
  59. ^Muriale L, Lee E, Genovese J, Trend S (1996). "Fatality due to acute fluoride poisoning following dermal contact with hydrofluoric acid in a palynology laboratory".Ann. Occup. Hyg.40 (6):705–710.doi:10.1016/S0003-4878(96)00010-5.PMID 8958774.
  60. ^Murray TM, Ste-Marie LG (1996)."Prevention and management of osteoporosis: consensus statements from the Scientific Advisory Board of the Osteoporosis Society of Canada. 7. Fluoride therapy for osteoporosis".CMAJ.155 (7):949–54.PMC 1335460.PMID 8837545.
  61. ^National Health and Medical Research Council (Australia) (2007).A systematic review of the efficacy and safety of fluoridation(PDF).ISBN 978-1-86496-415-8. Archived fromthe original(PDF) on 14 October 2009. Retrieved21 February 2010. Summary:Yeung CA (2008)."A systematic review of the efficacy and safety of fluoridation".Evid.-Based Dent.9 (2):39–43.doi:10.1038/sj.ebd.6400578.PMID 18584000.
  62. ^Haguenauer, D; Welch, V; Shea, B; Tugwell, P; Adachi, JD; Wells, G (2000). "Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis".Osteoporosis International.11 (9):727–38.doi:10.1007/s001980070051.PMID 11148800.S2CID 538666.
  63. ^World Health Organization (2004)."Fluoride in drinking-water"(PDF). Archived fromthe original(PDF) on 4 March 2016. Retrieved13 February 2014.
  64. ^Eawag (2015) Geogenic Contamination Handbook – Addressing Arsenic and Fluoride in Drinking Water. C.A. Johnson, A. Bretzler (Eds.), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Duebendorf, Switzerland. (download: www.eawag.ch/en/research/humanwelfare/drinkingwater/wrq/geogenic-contamination-handbook/)
  65. ^Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. (2013)."Groundwater arsenic contamination throughout China".Science.341 (6148):866–868.Bibcode:2013Sci...341..866R.doi:10.1126/science.1237484.PMID 23970694.S2CID 206548777.
  66. ^Groundwater Assessment Platform
  67. ^Nakagawa M, Matsuya S, Shiraishi T, Ohta M (1999). "Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use".Journal of Dental Research.78 (9):1568–72.doi:10.1177/00220345990780091201.PMID 10512392.S2CID 32650790.
  68. ^"Ammonium bifluoride in the glass industry - Chimex Ltd".

External links

[edit]
Wikimedia Commons has media related toFluorides.
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
Group 1
Group 11
Group 13
Group 14
Group 15 (Pnictides)
Group 16 (Chalcogenides)
Group 17 (Halides)
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fluoride&oldid=1313045256"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp