Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Flory–Schulz distribution

From Wikipedia, the free encyclopedia
Probability distribution in chemistry
Flory–Schulz distribution
Probability mass function
Parameters0 <a < 1 (real)
Supportk ∈ { 1, 2, 3, ... }
PMFa2k(1a)k1{\displaystyle a^{2}k(1-a)^{k-1}}
CDF1(1a)k(1+ak){\displaystyle 1-(1-a)^{k}(1+ak)}
Mean2a1{\displaystyle {\frac {2}{a}}-1}
MedianW((1a)1alog(1a)2a)log(1a)1a{\displaystyle {\frac {W\left({\frac {(1-a)^{\frac {1}{a}}\log(1-a)}{2a}}\right)}{\log(1-a)}}-{\frac {1}{a}}}
Mode1log(1a){\displaystyle -{\frac {1}{\log(1-a)}}}
Variance22aa2{\displaystyle {\frac {2-2a}{a^{2}}}}
Skewness2a22a{\displaystyle {\frac {2-a}{\sqrt {2-2a}}}}
Excess kurtosis(a6)a+622a{\displaystyle {\frac {(a-6)a+6}{2-2a}}}
MGFa2et((a1)et+1)2{\displaystyle {\frac {a^{2}e^{t}}{\left((a-1)e^{t}+1\right)^{2}}}}
CFa2eit(1+(a1)eit)2{\displaystyle {\frac {a^{2}e^{it}}{\left(1+(a-1)e^{it}\right)^{2}}}}
PGFa2z((a1)z+1)2{\displaystyle {\frac {a^{2}z}{((a-1)z+1)^{2}}}}

TheFlory–Schulz distribution is a discreteprobability distribution named afterPaul Flory andGünter Victor Schulz that describes the relative ratios ofpolymers of different length that occur in an ideal step-growthpolymerization process. Theprobability mass function (pmf) for themass fraction of chains of lengthk{\displaystyle k} is:wa(k)=a2k(1a)k1.{\displaystyle w_{a}(k)=a^{2}k(1-a)^{k-1}{\text{.}}}

In this equation,k is the number of monomers in the chain,[1] and0<a<1 is an empirically determined constant related to the fraction of unreacted monomer remaining.[2]

The form of this distribution implies is that shorter polymers are favored over longer ones — the chain length is geometrically distributed. Apart from polymerization processes, this distribution is also relevant to theFischer–Tropsch process that is conceptually related, where it is known asAnderson-Schulz-Flory (ASF)distribution, in that lighterhydrocarbons are converted to heavier hydrocarbons that are desirable as aliquid fuel.

The pmf of this distribution is a solution of the following equation:{(a1)(k+1)wa(k)+kwa(k+1)=0,wa(0)=0,wa(1)=a2.}{\displaystyle \left\{{\begin{array}{l}(a-1)(k+1)w_{a}(k)+kw_{a}(k+1)=0{\text{,}}\\[10pt]w_{a}(0)=0{\text{,}}w_{a}(1)=a^{2}{\text{.}}\end{array}}\right\}}As a probability distribution, one can note that if X and Y are two independent andgeometrically distributed random variables with parametera{\displaystyle a} taking values in{0,1,}{\displaystyle \{0,1,\cdots \}}, thenwa(k)=P(X+Y+1=k){\displaystyle w_{a}(k)=\mathbb {P} \left(X+Y+1=k\right)}This in turn means that the Flory-Schulz distribution is a shifted version of thenegative binomial distribution, with parametersr=2{\displaystyle r=2} andp=a{\displaystyle p=a}.

References

[edit]
  1. ^Flory, Paul J. (October 1936). "Molecular Size Distribution in Linear Condensation Polymers".Journal of the American Chemical Society.58 (10):1877–1885.doi:10.1021/ja01301a016.ISSN 0002-7863.
  2. ^IUPAC,Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "most probable distribution".doi:10.1351/goldbook.M04035
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Flory–Schulz_distribution&oldid=1295432240"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp