Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Finite strain theory

From Wikipedia, the free encyclopedia
Mathematical model for describing material deformation under stress
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(August 2023) (Learn how and when to remove this message)
Part of a series on
Continuum mechanics
J=Ddφdx{\displaystyle J=-D{\frac {d\varphi }{dx}}}

Incontinuum mechanics, thefinite strain theory—also calledlarge strain theory, orlarge deformation theory—deals withdeformations in which strains and/or rotations are large enough to invalidate assumptions inherent ininfinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case withelastomers,plastically deforming materials and otherfluids andbiologicalsoft tissue.

Displacement field

[edit]
This section is an excerpt fromDisplacement field (mechanics) § Decomposition.[edit]
Figure 1. Motion of a continuum body.

The displacement of a body has two components: arigid-body displacement and a deformation.

A change in the configuration of a continuum body can be described by adisplacement field. Adisplacement field is avector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. The distance between any two particles changes if and only if deformation has occurred. If displacement occurs without deformation, then it is a rigid-body displacement.

Deformation gradient tensor

[edit]
Figure 2. Deformation of a continuum body.

Thedeformation gradient tensor is a quantity related to both the reference and current configuration, and expresses motion locally around a point.Two types of deformation gradient tensor may be defined.

Thematerial deformation gradient tensorF(X,t)=FjKejIK{\displaystyle \mathbf {F} (\mathbf {X} ,t)=F_{jK}\mathbf {e} _{j}\otimes \mathbf {I} _{K}} is asecond-order tensor that represents the gradient of thesmooth and invertible mapping functionχ(X,t){\displaystyle \chi (\mathbf {X} ,t)\,\!}, which describes themotion of a continuum.In particular, the continuity of the mapping functionχ(X,t){\displaystyle \chi (\mathbf {X} ,t)\,\!} implies thatcracks and voids do not open or close during the deformation.The material deformation gradient tensor characterizes the local deformation at a material point with position vectorX{\displaystyle \mathbf {X} \,\!}, i.e., deformation at neighbouring points, by transforming (linear transformation) a material line element emanating from that point from the reference configuration to the current or deformed configuration.Thus we have,dx=xXdXordxj=xjXKdXK=χ(X,t)dXordxj=FjKdXK.=F(X,t)dX{\displaystyle {\begin{aligned}d\mathbf {x} &={\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}\,d\mathbf {X} \qquad &{\text{or}}&\qquad dx_{j}={\frac {\partial x_{j}}{\partial X_{K}}}\,dX_{K}\\&=\nabla \chi (\mathbf {X} ,t)\,d\mathbf {X} \qquad &{\text{or}}&\qquad dx_{j}=F_{jK}\,dX_{K}\,.\\&=\mathbf {F} (\mathbf {X} ,t)\,d\mathbf {X} \end{aligned}}}

Assuming thatχ(X,t){\displaystyle \chi (\mathbf {X} ,t)\,\!} hasa smooth inverse,F{\displaystyle \mathbf {F} } has the inverseH=F1=Xx{\displaystyle \mathbf {H} =\mathbf {F} ^{-1}={\frac {\partial \mathbf {X} }{\partial \mathbf {x} }}\,\!}, which is thespatial deformation gradient tensor.F{\displaystyle \mathbf {F} } being invertible is equivalent todetF0{\displaystyle {\text{det}}\mathbf {F} \neq 0}, which corresponds to the notion that the material cannot be infinitely compressed.

Relative displacement vector

[edit]

Consider aparticle or material pointP{\displaystyle P} with position vectorX=XIII{\displaystyle \mathbf {X} =X_{I}\mathbf {I} _{I}} in the undeformed configuration (Figure 2). After a displacement of the body, the new position of the particle indicated byp{\displaystyle p} in the new configuration is given by the vector positionx=xiei{\displaystyle \mathbf {x} =x_{i}\mathbf {e} _{i}\,\!}. The coordinate systems for the undeformed and deformed configuration can be superimposed for convenience.

Consider now a material pointQ{\displaystyle Q} neighboringP{\displaystyle P\,\!}, with position vectorX+ΔX=(XI+ΔXI)II{\displaystyle \mathbf {X} +\Delta \mathbf {X} =(X_{I}+\Delta X_{I})\mathbf {I} _{I}\,\!}. In the deformed configuration this particle has a new positionq{\displaystyle q} given by the position vectorx+Δx{\displaystyle \mathbf {x} +\Delta \mathbf {x} \,\!}. Assuming that the line segmentsΔX{\displaystyle \Delta X} andΔx{\displaystyle \Delta \mathbf {x} } joining the particlesP{\displaystyle P} andQ{\displaystyle Q} in both the undeformed and deformed configuration, respectively, to be very small, then we can express them asdX{\displaystyle d\mathbf {X} } anddx{\displaystyle d\mathbf {x} \,\!}. Thus from Figure 2 we havex=X+u(X),x+dx=X+dX+u(X+dX),and thereforedx=Xx+dX+u(X+dX)=dX+u(X+dX)u(X)=dX+du,{\displaystyle {\begin{aligned}\mathbf {x} &=\mathbf {X} +\mathbf {u} (\mathbf {X} ),\\\mathbf {x} +d\mathbf {x} &=\mathbf {X} +d\mathbf {X} +\mathbf {u} (\mathbf {X} +d\mathbf {X} ),\\{\text{and}}{\text{ therefore}}&\\d\mathbf {x} &=\mathbf {X} -\mathbf {x} +d\mathbf {X} +\mathbf {u} (\mathbf {X} +d\mathbf {X} )\\&=d\mathbf {X} +\mathbf {u} (\mathbf {X} +d\mathbf {X} )-\mathbf {u} (\mathbf {X} )\\&=d\mathbf {X} +d\mathbf {u} \\\end{aligned}},}

wheredu{\displaystyle \mathbf {du} } is therelative displacement vector, which represents the relative displacement ofQ{\displaystyle Q} with respect toP{\displaystyle P} in the deformed configuration.

Taylor approximation

[edit]

For an infinitesimal elementdX{\displaystyle d\mathbf {X} \,\!}, and assuming continuity on the displacement field, it is possible to use aTaylor series expansion around pointP{\displaystyle P\,\!}, neglecting higher-order terms, to approximate the components of the relative displacement vector for the neighboring particleQ{\displaystyle Q} asu(X+dX)=u(X)+duorui=ui+duiu(X)+XudXoruiui+uiXJdXJ.{\displaystyle {\begin{aligned}\mathbf {u} (\mathbf {X} +d\mathbf {X} )&=\mathbf {u} (\mathbf {X} )+d\mathbf {u} \quad &{\text{or}}&\quad u_{i}^{*}=u_{i}+du_{i}\\&\approx \mathbf {u} (\mathbf {X} )+\nabla _{\mathbf {X} }\mathbf {u} \cdot d\mathbf {X} \quad &{\text{or}}&\quad u_{i}^{*}\approx u_{i}+{\frac {\partial u_{i}}{\partial X_{J}}}dX_{J}\,.\end{aligned}}}Thus, the previous equationdx=dX+du{\displaystyle d\mathbf {x} =d\mathbf {X} +d\mathbf {u} } can be written asdx=dX+du=dX+XudX=(I+Xu)dX=FdX{\displaystyle {\begin{aligned}d\mathbf {x} &=d\mathbf {X} +d\mathbf {u} \\&=d\mathbf {X} +\nabla _{\mathbf {X} }\mathbf {u} \cdot d\mathbf {X} \\&=\left(\mathbf {I} +\nabla _{\mathbf {X} }\mathbf {u} \right)d\mathbf {X} \\&=\mathbf {F} d\mathbf {X} \end{aligned}}}

Time-derivative of the deformation gradient

[edit]

Calculations that involve the time-dependent deformation of a body often require atime derivative of the deformation gradient to be calculated. A geometrically consistent definition of such a derivative requires an excursion intodifferential geometry[1] but we avoid those issues in this article.

The time derivative ofF{\displaystyle \mathbf {F} } isF˙=Ft=t[x(X,t)X]=X[x(X,t)t]=X[V(X,t)]{\displaystyle {\dot {\mathbf {F} }}={\frac {\partial \mathbf {F} }{\partial t}}={\frac {\partial }{\partial t}}\left[{\frac {\partial \mathbf {x} (\mathbf {X} ,t)}{\partial \mathbf {X} }}\right]={\frac {\partial }{\partial \mathbf {X} }}\left[{\frac {\partial \mathbf {x} (\mathbf {X} ,t)}{\partial t}}\right]={\frac {\partial }{\partial \mathbf {X} }}\left[\mathbf {V} (\mathbf {X} ,t)\right]}whereV{\displaystyle \mathbf {V} } is the (material) velocity. The derivative on the right hand side represents amaterial velocity gradient. It is common to convert that into a spatial gradient by applying the chain rule for derivatives, i.e.,F˙=X[V(X,t)]=X[v(x(X,t),t)]=x[v(x,t)]|x=x(X,t)x(X,t)X=lF{\displaystyle {\dot {\mathbf {F} }}={\frac {\partial }{\partial \mathbf {X} }}\left[\mathbf {V} (\mathbf {X} ,t)\right]={\frac {\partial }{\partial \mathbf {X} }}\left[\mathbf {v} (\mathbf {x} (\mathbf {X} ,t),t)\right]=\left.{\frac {\partial }{\partial \mathbf {x} }}\left[\mathbf {v} (\mathbf {x} ,t)\right]\right|_{\mathbf {x} =\mathbf {x} (\mathbf {X} ,t)}\cdot {\frac {\partial \mathbf {x} (\mathbf {X} ,t)}{\partial \mathbf {X} }}={\boldsymbol {l}}\cdot \mathbf {F} }wherel=(xv)T{\displaystyle {\boldsymbol {l}}=(\nabla _{\mathbf {x} }\mathbf {v} )^{T}} is thespatial velocity gradient and wherev(x,t)=V(X,t){\displaystyle \mathbf {v} (\mathbf {x} ,t)=\mathbf {V} (\mathbf {X} ,t)} is the spatial (Eulerian) velocity atx=x(X,t){\displaystyle \mathbf {x} =\mathbf {x} (\mathbf {X} ,t)}. If the spatial velocity gradient is constant in time, the above equation can be solved exactly to giveF=elt{\displaystyle \mathbf {F} =e^{{\boldsymbol {l}}\,t}}assumingF=1{\displaystyle \mathbf {F} =\mathbf {1} } att=0{\displaystyle t=0}. There are several methods of computing theexponential above.

Related quantities often used in continuum mechanics are therate of deformation tensor and thespin tensor defined, respectively, as:d=12(l+lT),  w=12(llT).{\displaystyle {\boldsymbol {d}}={\tfrac {1}{2}}\left({\boldsymbol {l}}+{\boldsymbol {l}}^{T}\right)\,,~~{\boldsymbol {w}}={\tfrac {1}{2}}\left({\boldsymbol {l}}-{\boldsymbol {l}}^{T}\right)\,.}The rate of deformation tensor gives the rate of stretching of line elements while thespin tensor indicates the rate of rotation orvorticity of the motion.

The material time derivative of the inverse of the deformation gradient (keeping the reference configuration fixed) is often required in analyses that involve finite strains. This derivative ist(F1)=F1F˙F1.{\displaystyle {\frac {\partial }{\partial t}}\left(\mathbf {F} ^{-1}\right)=-\mathbf {F} ^{-1}\cdot {\dot {\mathbf {F} }}\cdot \mathbf {F} ^{-1}\,.}The above relation can be verified by taking the material time derivative ofF1dx=dX{\displaystyle \mathbf {F} ^{-1}\cdot d\mathbf {x} =d\mathbf {X} } and noting thatX˙=0{\displaystyle {\dot {\mathbf {X} }}=0}.

Polar decomposition of the deformation gradient tensor

[edit]
Figure 3. Representation of the polar decomposition of the deformation gradient

The deformation gradientF{\displaystyle \mathbf {F} }, like any invertible second-order tensor, can be decomposed, using thepolar decomposition theorem, into a product of two second-order tensors (Truesdell and Noll, 1965): an orthogonal tensor and a positive definite symmetric tensor, i.e.,F=RU=VR{\displaystyle \mathbf {F} =\mathbf {R} \mathbf {U} =\mathbf {V} \mathbf {R} } where the tensorR{\displaystyle \mathbf {R} } is aproper orthogonal tensor, i.e.,R1=RT{\displaystyle \mathbf {R} ^{-1}=\mathbf {R} ^{T}} anddetR=+1{\displaystyle \det \mathbf {R} =+1\,\!}, representing a rotation; the tensorU{\displaystyle \mathbf {U} } is theright stretch tensor; andV{\displaystyle \mathbf {V} } theleft stretch tensor. The termsright andleft means that they are to the right and left of the rotation tensorR{\displaystyle \mathbf {R} \,\!}, respectively.U{\displaystyle \mathbf {U} } andV{\displaystyle \mathbf {V} } are bothpositive definite, i.e.xUx>0{\displaystyle \mathbf {x} \cdot \mathbf {U} \cdot \mathbf {x} >0} andxVx>0{\displaystyle \mathbf {x} \cdot \mathbf {V} \cdot \mathbf {x} >0} for all non-zeroxR3{\displaystyle \mathbf {x} \in \mathbb {R} ^{3}}, andsymmetric tensors, i.e.U=UT{\displaystyle \mathbf {U} =\mathbf {U} ^{T}} andV=VT{\displaystyle \mathbf {V} =\mathbf {V} ^{T}\,\!}, of second order.

This decomposition implies that the deformation of a line elementdX{\displaystyle d\mathbf {X} } in the undeformed configuration ontodx{\displaystyle d\mathbf {x} } in the deformed configuration, i.e.,dx=FdX{\displaystyle d\mathbf {x} =\mathbf {F} \,d\mathbf {X} \,\!}, may be obtained either by first stretching the element byU{\displaystyle \mathbf {U} \,\!}, i.e.dx=UdX{\displaystyle d\mathbf {x} '=\mathbf {U} \,d\mathbf {X} \,\!}, followed by a rotationR{\displaystyle \mathbf {R} \,\!}, i.e.,dx=Rdx{\displaystyle d\mathbf {x} =\mathbf {R} \,d\mathbf {x} '\,\!}; or equivalently, by applying a rigid rotationR{\displaystyle \mathbf {R} } first, i.e.,dx=RdX{\displaystyle d\mathbf {x} '=\mathbf {R} \,d\mathbf {X} \,\!}, followed later by a stretchingV{\displaystyle \mathbf {V} \,\!}, i.e.,dx=Vdx{\displaystyle d\mathbf {x} =\mathbf {V} \,d\mathbf {x} '} (See Figure 3).

Due to the orthogonality ofR{\displaystyle \mathbf {R} }V=RURT{\displaystyle \mathbf {V} =\mathbf {R} \cdot \mathbf {U} \cdot \mathbf {R} ^{T}}so thatU{\displaystyle \mathbf {U} } andV{\displaystyle \mathbf {V} } have the sameeigenvalues orprincipal stretches, but differenteigenvectors orprincipal directionsNi{\displaystyle \mathbf {N} _{i}} andni{\displaystyle \mathbf {n} _{i}\,\!}, respectively. The principal directions are related byni=RNi.{\displaystyle \mathbf {n} _{i}=\mathbf {R} \mathbf {N} _{i}.}

This polar decomposition, which is unique asF{\displaystyle \mathbf {F} } is invertible with a positive determinant, is a corollary of thesingular-value decomposition.

Transformation of a surface and volume element

[edit]

To transform quantities that are defined with respect to areas in a deformed configuration to those relative to areas in a reference configuration, and vice versa, we useNanson's relation, expressed asda n=J dA FTN{\displaystyle da~\mathbf {n} =J~dA~\mathbf {F} ^{-T}\cdot \mathbf {N} } whereda{\displaystyle da} is an area of a region in the deformed configuration,dA{\displaystyle dA} is the same area in the reference configuration, andn{\displaystyle \mathbf {n} } is the outward normal to the area element in the current configuration whileN{\displaystyle \mathbf {N} } is the outward normal in the reference configuration,F{\displaystyle \mathbf {F} } is thedeformation gradient, andJ=detF{\displaystyle J=\det \mathbf {F} \,\!}.

The corresponding formula for the transformation of thevolume element isdv=J dV{\displaystyle dv=J~dV}

Derivation of Nanson's relation (see also[2])

To see how this formula is derived, we start with the oriented area elements in the reference and current configurations:dA=dA N ;  da=da n{\displaystyle d\mathbf {A} =dA~\mathbf {N} ~;~~d\mathbf {a} =da~\mathbf {n} }The reference and current volumes of an element aredV=dATdL ;  dv=daTdl{\displaystyle dV=d\mathbf {A} ^{T}\cdot d\mathbf {L} ~;~~dv=d\mathbf {a} ^{T}\cdot d\mathbf {l} }wheredl=FdL{\displaystyle d\mathbf {l} =\mathbf {F} \cdot d\mathbf {L} \,\!}.

Therefore,daTdl=dv=J dV=J dATdL{\displaystyle d\mathbf {a} ^{T}\cdot d\mathbf {l} =dv=J~dV=J~d\mathbf {A} ^{T}\cdot d\mathbf {L} }or,daTFdL=dv=J dV=J dATdL{\displaystyle d\mathbf {a} ^{T}\cdot \mathbf {F} \cdot d\mathbf {L} =dv=J~dV=J~d\mathbf {A} ^{T}\cdot d\mathbf {L} }so,daTF=J dAT{\displaystyle d\mathbf {a} ^{T}\cdot \mathbf {F} =J~d\mathbf {A} ^{T}}So we getda=J FTdA{\displaystyle d\mathbf {a} =J~\mathbf {F} ^{-T}\cdot d\mathbf {A} }or,da n=J dA FTN{\displaystyle da~\mathbf {n} =J~dA~\mathbf {F} ^{-T}\cdot \mathbf {N} }Q.E.D.

Fundamental strain tensors

[edit]

A strain tensor is defined by theIUPAC as:[3]

"A symmetric tensor that results when a deformation gradient tensor is factorized into a rotation tensor followed or preceded by a symmetric tensor".

Since a pure rotation should not induce any strains in a deformable body, it is often convenient to use rotation-independent measures of deformation incontinuum mechanics. As a rotation followed by its inverse rotation leads to no change (RRT=RTR=I{\displaystyle \mathbf {R} \mathbf {R} ^{T}=\mathbf {R} ^{T}\mathbf {R} =\mathbf {I} \,\!}) we can exclude the rotation by multiplying the deformation gradient tensorF{\displaystyle \mathbf {F} } by itstranspose.

Several rotation-independent deformation gradient tensors (or "deformation tensors", for short) are used in mechanics. Insolid mechanics, the most popular of these are the right and left Cauchy–Green deformation tensors.

Cauchy strain tensor (right Cauchy–Green deformation tensor)

[edit]

In 1839,George Green introduced a deformation tensor known as theright Cauchy–Green deformation tensor orGreen's deformation tensor (theIUPAC recommends that this tensor be called theCauchy strain tensor),[3] defined as:

C=FTF=U2orCIJ=FkI FkJ=xkXIxkXJ.{\displaystyle \mathbf {C} =\mathbf {F} ^{T}\mathbf {F} =\mathbf {U} ^{2}\qquad {\text{or}}\qquad C_{IJ}=F_{kI}~F_{kJ}={\frac {\partial x_{k}}{\partial X_{I}}}{\frac {\partial x_{k}}{\partial X_{J}}}.}

Physically, the Cauchy–Green tensor gives us the square of local change in distances due to deformation, i.e.dx2=dXCdX{\displaystyle d\mathbf {x} ^{2}=d\mathbf {X} \cdot \mathbf {C} \cdot d\mathbf {X} }

Invariants ofC{\displaystyle \mathbf {C} } are often used in the expressions forstrain energy density functions. The most commonly usedinvariants areI1C:=tr(C)=CII=λ12+λ22+λ32I2C:=12[(tr C)2tr(C2)]=12[(CJJ)2CIKCKI]=λ12λ22+λ22λ32+λ32λ12I3C:=det(C)=J2=λ12λ22λ32.{\displaystyle {\begin{aligned}I_{1}^{C}&:={\text{tr}}(\mathbf {C} )=C_{II}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}\\I_{2}^{C}&:={\tfrac {1}{2}}\left[({\text{tr}}~\mathbf {C} )^{2}-{\text{tr}}(\mathbf {C} ^{2})\right]={\tfrac {1}{2}}\left[(C_{JJ})^{2}-C_{IK}C_{KI}\right]=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\\I_{3}^{C}&:=\det(\mathbf {C} )=J^{2}=\lambda _{1}^{2}\lambda _{2}^{2}\lambda _{3}^{2}.\end{aligned}}}whereJ:=detF{\displaystyle J:=\det \mathbf {F} } is the determinant of the deformation gradientF{\displaystyle \mathbf {F} } andλi{\displaystyle \lambda _{i}} are stretch ratios for the unit fibers that are initially oriented along the eigenvector directions of the right (reference) stretch tensor (these are not generally aligned with the three axis of the coordinate systems).

Finger strain tensor

[edit]

TheIUPAC recommends[3] that the inverse of the right Cauchy–Green deformation tensor (called the Cauchy strain tensor in that document), i. e.,C1{\displaystyle \mathbf {C} ^{-1}}, be called theFinger strain tensor. However, that nomenclature is not universally accepted inapplied mechanics.

f=C1=F1FTorfIJ=XIxkXJxk{\displaystyle \mathbf {f} =\mathbf {C} ^{-1}=\mathbf {F} ^{-1}\mathbf {F} ^{-T}\qquad {\text{or}}\qquad f_{IJ}={\frac {\partial X_{I}}{\partial x_{k}}}{\frac {\partial X_{J}}{\partial x_{k}}}}

Green strain tensor (left Cauchy–Green deformation tensor)

[edit]

Reversing the order of multiplication in the formula for the right Cauchy-Green deformation tensor leads to theleft Cauchy–Green deformation tensor which is defined as:B=FFT=V2orBij=xiXKxjXK{\displaystyle \mathbf {B} =\mathbf {F} \mathbf {F} ^{T}=\mathbf {V} ^{2}\qquad {\text{or}}\qquad B_{ij}={\frac {\partial x_{i}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{K}}}}

The left Cauchy–Green deformation tensor is often called theFinger deformation tensor, named afterJosef Finger (1894).[4]

TheIUPAC recommends that this tensor be called theGreen strain tensor.[3]

Invariants ofB{\displaystyle \mathbf {B} } are also used in the expressions forstrain energy density functions. The conventional invariants are defined asI1:=tr(B)=Bii=λ12+λ22+λ32I2:=12[(tr B)2tr(B2)]=12(Bii2BjkBkj)=λ12λ22+λ22λ32+λ32λ12I3:=detB=J2=λ12λ22λ32{\displaystyle {\begin{aligned}I_{1}&:={\text{tr}}(\mathbf {B} )=B_{ii}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}\\I_{2}&:={\tfrac {1}{2}}\left[({\text{tr}}~\mathbf {B} )^{2}-{\text{tr}}(\mathbf {B} ^{2})\right]={\tfrac {1}{2}}\left(B_{ii}^{2}-B_{jk}B_{kj}\right)=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\\I_{3}&:=\det \mathbf {B} =J^{2}=\lambda _{1}^{2}\lambda _{2}^{2}\lambda _{3}^{2}\end{aligned}}}whereJ:=detF{\displaystyle J:=\det \mathbf {F} } is the determinant of the deformation gradient.

For compressible materials, a slightly different set of invariants is used:(I¯1:=J2/3I1 ;  I¯2:=J4/3I2 ;  J1) .{\displaystyle ({\bar {I}}_{1}:=J^{-2/3}I_{1}~;~~{\bar {I}}_{2}:=J^{-4/3}I_{2}~;~~J\neq 1)~.}

Piola strain tensor (Cauchy deformation tensor)

[edit]

Earlier in 1828,[5]Augustin-Louis Cauchy introduced a deformation tensor defined as the inverse of the left Cauchy–Green deformation tensor,B1{\displaystyle \mathbf {B} ^{-1}\,\!}. This tensor has also been called thePiola strain tensor by the IUPAC[3] and theFinger tensor[6] in the rheology and fluid dynamics literature.

c=B1=F1TF1orcij=XKxiXKxj{\displaystyle \mathbf {c} =\mathbf {B} ^{-1}=\mathbf {F} ^{-1T}\mathbf {F} ^{-1}\qquad {\text{or}}\qquad c_{ij}={\frac {\partial X_{K}}{\partial x_{i}}}{\frac {\partial X_{K}}{\partial x_{j}}}}

Spectral representation

[edit]

If there are three distinct principal stretchesλi{\displaystyle \lambda _{i}\,\!}, thespectral decompositions ofC{\displaystyle \mathbf {C} } andB{\displaystyle \mathbf {B} } is given by

C=i=13λi2NiNiandB=i=13λi2nini{\displaystyle \mathbf {C} =\sum _{i=1}^{3}\lambda _{i}^{2}\mathbf {N} _{i}\otimes \mathbf {N} _{i}\qquad {\text{and}}\qquad \mathbf {B} =\sum _{i=1}^{3}\lambda _{i}^{2}\mathbf {n} _{i}\otimes \mathbf {n} _{i}}

Furthermore,

U=i=13λiNiNi ;  V=i=13λinini{\displaystyle \mathbf {U} =\sum _{i=1}^{3}\lambda _{i}\mathbf {N} _{i}\otimes \mathbf {N} _{i}~;~~\mathbf {V} =\sum _{i=1}^{3}\lambda _{i}\mathbf {n} _{i}\otimes \mathbf {n} _{i}}R=i=13niNi ;  F=i=13λiniNi{\displaystyle \mathbf {R} =\sum _{i=1}^{3}\mathbf {n} _{i}\otimes \mathbf {N} _{i}~;~~\mathbf {F} =\sum _{i=1}^{3}\lambda _{i}\mathbf {n} _{i}\otimes \mathbf {N} _{i}}

Observe thatV=R U RT=i=13λi R (NiNi) RT=i=13λi (R Ni)(R Ni){\displaystyle \mathbf {V} =\mathbf {R} ~\mathbf {U} ~\mathbf {R} ^{T}=\sum _{i=1}^{3}\lambda _{i}~\mathbf {R} ~(\mathbf {N} _{i}\otimes \mathbf {N} _{i})~\mathbf {R} ^{T}=\sum _{i=1}^{3}\lambda _{i}~(\mathbf {R} ~\mathbf {N} _{i})\otimes (\mathbf {R} ~\mathbf {N} _{i})}Therefore, the uniqueness of the spectral decomposition also implies thatni=R Ni{\displaystyle \mathbf {n} _{i}=\mathbf {R} ~\mathbf {N} _{i}\,\!}. The left stretch (V{\displaystyle \mathbf {V} \,\!}) is also called thespatial stretch tensor while the right stretch (U{\displaystyle \mathbf {U} \,\!}) is called thematerial stretch tensor.

The effect ofF{\displaystyle \mathbf {F} } acting onNi{\displaystyle \mathbf {N} _{i}} is to stretch the vector byλi{\displaystyle \lambda _{i}} and to rotate it to the new orientationni{\displaystyle \mathbf {n} _{i}\,\!}, i.e.,F Ni=λi (R Ni)=λi ni{\displaystyle \mathbf {F} ~\mathbf {N} _{i}=\lambda _{i}~(\mathbf {R} ~\mathbf {N} _{i})=\lambda _{i}~\mathbf {n} _{i}}In a similar vein,FT Ni=1λi ni ;  FT ni=λi Ni ;  F1 ni=1λi Ni .{\displaystyle \mathbf {F} ^{-T}~\mathbf {N} _{i}={\cfrac {1}{\lambda _{i}}}~\mathbf {n} _{i}~;~~\mathbf {F} ^{T}~\mathbf {n} _{i}=\lambda _{i}~\mathbf {N} _{i}~;~~\mathbf {F} ^{-1}~\mathbf {n} _{i}={\cfrac {1}{\lambda _{i}}}~\mathbf {N} _{i}~.}

Examples

[edit]
Uniaxial extension of an incompressible material
This is the case where a specimen is stretched in 1-direction with astretch ratio ofα=α1{\displaystyle \mathbf {\alpha =\alpha _{1}} \,\!}. If the volume remains constant, the contraction in the other two directions is such thatα1α2α3=1{\displaystyle \mathbf {\alpha _{1}\alpha _{2}\alpha _{3}=1} } orα2=α3=α0.5{\displaystyle \mathbf {\alpha _{2}=\alpha _{3}=\alpha ^{-0.5}} \,\!}. Then:F=[α000α0.5000α0.5]{\displaystyle \mathbf {F} ={\begin{bmatrix}\alpha &0&0\\0&\alpha ^{-0.5}&0\\0&0&\alpha ^{-0.5}\end{bmatrix}}}B=C=[α2000α1000α1]{\displaystyle \mathbf {B} =\mathbf {C} ={\begin{bmatrix}\alpha ^{2}&0&0\\0&\alpha ^{-1}&0\\0&0&\alpha ^{-1}\end{bmatrix}}}
Simple shear
F=[1γ0010001]{\displaystyle \mathbf {F} ={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}}B=[1+γ2γ0γ10001]{\displaystyle \mathbf {B} ={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}}C=[1γ0γ1+γ20001]{\displaystyle \mathbf {C} ={\begin{bmatrix}1&\gamma &0\\\gamma &1+\gamma ^{2}&0\\0&0&1\end{bmatrix}}}
Rigid body rotation
F=[cosθsinθ0sinθcosθ0001]{\displaystyle \mathbf {F} ={\begin{bmatrix}\cos \theta &\sin \theta &0\\-\sin \theta &\cos \theta &0\\0&0&1\end{bmatrix}}}B=C=[100010001]=1{\displaystyle \mathbf {B} =\mathbf {C} ={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}=\mathbf {1} }

Derivatives of stretch

[edit]

Derivatives of the stretch with respect to the right Cauchy–Green deformation tensor are used to derive the stress-strain relations of many solids, particularlyhyperelastic materials. These derivatives areλiC=12λi NiNi=12λi RT (nini) R ;  i=1,2,3{\displaystyle {\cfrac {\partial \lambda _{i}}{\partial \mathbf {C} }}={\cfrac {1}{2\lambda _{i}}}~\mathbf {N} _{i}\otimes \mathbf {N} _{i}={\cfrac {1}{2\lambda _{i}}}~\mathbf {R} ^{T}~(\mathbf {n} _{i}\otimes \mathbf {n} _{i})~\mathbf {R} ~;~~i=1,2,3}and follow from the observations thatC:(NiNi)=λi2 ;    CC=I(s) ;    I(s):(NiNi)=NiNi.{\displaystyle \mathbf {C} :(\mathbf {N} _{i}\otimes \mathbf {N} _{i})=\lambda _{i}^{2}~;~~~~{\cfrac {\partial \mathbf {C} }{\partial \mathbf {C} }}={\mathsf {I}}^{(s)}~;~~~~{\mathsf {I}}^{(s)}:(\mathbf {N} _{i}\otimes \mathbf {N} _{i})=\mathbf {N} _{i}\otimes \mathbf {N} _{i}.}

Physical interpretation of deformation tensors

[edit]

LetX=Xi Ei{\displaystyle \mathbf {X} =X^{i}~{\boldsymbol {E}}_{i}} be a Cartesian coordinate system defined on the undeformed body and letx=xi Ei{\displaystyle \mathbf {x} =x^{i}~{\boldsymbol {E}}_{i}} be another system defined on the deformed body. Let a curveX(s){\displaystyle \mathbf {X} (s)} in the undeformed body be parametrized usings[0,1]{\displaystyle s\in [0,1]}. Its image in the deformed body isx(X(s)){\displaystyle \mathbf {x} (\mathbf {X} (s))}.

The undeformed length of the curve is given bylX=01|dXds| ds=01dXdsdXds ds=01dXdsIdXds ds{\displaystyle l_{X}=\int _{0}^{1}\left|{\cfrac {d\mathbf {X} }{ds}}\right|~ds=\int _{0}^{1}{\sqrt {{\cfrac {d\mathbf {X} }{ds}}\cdot {\cfrac {d\mathbf {X} }{ds}}}}~ds=\int _{0}^{1}{\sqrt {{\cfrac {d\mathbf {X} }{ds}}\cdot {\boldsymbol {I}}\cdot {\cfrac {d\mathbf {X} }{ds}}}}~ds}After deformation, the length becomeslx=01|dxds| ds=01dxdsdxds ds=01(dxdXdXds)(dxdXdXds) ds=01dXds[(dxdX)TdxdX]dXds ds{\displaystyle {\begin{aligned}l_{x}&=\int _{0}^{1}\left|{\cfrac {d\mathbf {x} }{ds}}\right|~ds=\int _{0}^{1}{\sqrt {{\cfrac {d\mathbf {x} }{ds}}\cdot {\cfrac {d\mathbf {x} }{ds}}}}~ds=\int _{0}^{1}{\sqrt {\left({\cfrac {d\mathbf {x} }{d\mathbf {X} }}\cdot {\cfrac {d\mathbf {X} }{ds}}\right)\cdot \left({\cfrac {d\mathbf {x} }{d\mathbf {X} }}\cdot {\cfrac {d\mathbf {X} }{ds}}\right)}}~ds\\&=\int _{0}^{1}{\sqrt {{\cfrac {d\mathbf {X} }{ds}}\cdot \left[\left({\cfrac {d\mathbf {x} }{d\mathbf {X} }}\right)^{T}\cdot {\cfrac {d\mathbf {x} }{d\mathbf {X} }}\right]\cdot {\cfrac {d\mathbf {X} }{ds}}}}~ds\end{aligned}}}Note that the right Cauchy–Green deformation tensor is defined asC:=FTF=(dxdX)TdxdX{\displaystyle {\boldsymbol {C}}:={\boldsymbol {F}}^{T}\cdot {\boldsymbol {F}}=\left({\cfrac {d\mathbf {x} }{d\mathbf {X} }}\right)^{T}\cdot {\cfrac {d\mathbf {x} }{d\mathbf {X} }}}Hence,lx=01dXdsCdXds ds{\displaystyle l_{x}=\int _{0}^{1}{\sqrt {{\cfrac {d\mathbf {X} }{ds}}\cdot {\boldsymbol {C}}\cdot {\cfrac {d\mathbf {X} }{ds}}}}~ds}which indicates that changes in length are characterized byC{\displaystyle {\boldsymbol {C}}}.

Finite strain tensors

[edit]

The concept ofstrain is used to evaluate how much a given displacement differs locally from a rigid body displacement.[7][8][9] One of such strains for large deformations is theLagrangian finite strain tensor, also called theGreen-Lagrangian strain tensor orGreen–St-Venant strain tensor, defined as

E=12(CI)orEKL=12(xjXKxjXLδKL){\displaystyle \mathbf {E} ={\frac {1}{2}}(\mathbf {C} -\mathbf {I} )\qquad {\text{or}}\qquad E_{KL}={\frac {1}{2}}\left({\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}-\delta _{KL}\right)}

or as a function of the displacement gradient tensorE=12[(Xu)T+Xu+(Xu)TXu]{\displaystyle \mathbf {E} ={\frac {1}{2}}\left[(\nabla _{\mathbf {X} }\mathbf {u} )^{T}+\nabla _{\mathbf {X} }\mathbf {u} +(\nabla _{\mathbf {X} }\mathbf {u} )^{T}\cdot \nabla _{\mathbf {X} }\mathbf {u} \right]}orEKL=12(uKXL+uLXK+uMXKuMXL){\displaystyle E_{KL}={\frac {1}{2}}\left({\frac {\partial u_{K}}{\partial X_{L}}}+{\frac {\partial u_{L}}{\partial X_{K}}}+{\frac {\partial u_{M}}{\partial X_{K}}}{\frac {\partial u_{M}}{\partial X_{L}}}\right)}

The Green-Lagrangian strain tensor is a measure of how muchC{\displaystyle \mathbf {C} } differs fromI{\displaystyle \mathbf {I} \,\!}.

TheEulerian finite strain tensor, orEulerian-Almansi finite strain tensor, referenced to the deformed configuration (i.e. Eulerian description) is defined as

e=12(Ic)=12(IB1)orers=12(δrsXMxrXMxs){\displaystyle \mathbf {e} ={\frac {1}{2}}(\mathbf {I} -\mathbf {c} )={\frac {1}{2}}(\mathbf {I} -\mathbf {B} ^{-1})\qquad {\text{or}}\qquad e_{rs}={\frac {1}{2}}\left(\delta _{rs}-{\frac {\partial X_{M}}{\partial x_{r}}}{\frac {\partial X_{M}}{\partial x_{s}}}\right)}

or as a function of the displacement gradients we haveeij=12(uixj+ujxiukxiukxj){\displaystyle e_{ij}={\frac {1}{2}}\left({\frac {\partial u_{i}}{\partial x_{j}}}+{\frac {\partial u_{j}}{\partial x_{i}}}-{\frac {\partial u_{k}}{\partial x_{i}}}{\frac {\partial u_{k}}{\partial x_{j}}}\right)}

Derivation of the Lagrangian and Eulerian finite strain tensors

A measure of deformation is the difference between the squares of the differential line elementdX{\displaystyle d\mathbf {X} \,\!}, in the undeformed configuration, anddx{\displaystyle d\mathbf {x} \,\!}, in the deformed configuration (Figure 2). Deformation has occurred if the difference is non zero, otherwise a rigid-body displacement has occurred. Thus we have,

dx2dX2=dxdxdXdXor(dx)2(dX)2=dxjdxjdXMdXM{\displaystyle d\mathbf {x} ^{2}-d\mathbf {X} ^{2}=d\mathbf {x} \cdot d\mathbf {x} -d\mathbf {X} \cdot d\mathbf {X} \qquad {\text{or}}\qquad (dx)^{2}-(dX)^{2}=dx_{j}dx_{j}-dX_{M}\,dX_{M}}

In the Lagrangian description, using the material coordinates as the frame of reference, the linear transformation between the differential lines is

dx=xXdX=FdXordxj=xjXMdXM{\displaystyle d\mathbf {x} ={\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}\,d\mathbf {X} =\mathbf {F} \,d\mathbf {X} \qquad {\text{or}}\qquad dx_{j}={\frac {\partial x_{j}}{\partial X_{M}}}\,dX_{M}}

Then we have,

dx2=dxdx=FdXFdX=dXFTFdX=dXCdXor(dx)2=dxjdxj=xjXKxjXLdXKdXL=CKLdXKdXL{\displaystyle {\begin{aligned}d\mathbf {x} ^{2}&=d\mathbf {x} \cdot d\mathbf {x} \\&=\mathbf {F} \cdot d\mathbf {X} \cdot \mathbf {F} \cdot d\mathbf {X} \\&=d\mathbf {X} \cdot \mathbf {F} ^{T}\mathbf {F} \cdot d\mathbf {X} \\&=d\mathbf {X} \cdot \mathbf {C} \cdot d\mathbf {X} \end{aligned}}\qquad {\text{or}}\qquad {\begin{aligned}(dx)^{2}&=dx_{j}\,dx_{j}\\&={\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}\,dX_{K}\,dX_{L}\\&=C_{KL}\,dX_{K}\,dX_{L}\\\end{aligned}}}

whereCKL{\displaystyle C_{KL}} are the components of theright Cauchy–Green deformation tensor,C=FTF{\displaystyle \mathbf {C} =\mathbf {F} ^{T}\mathbf {F} \,\!}. Then, replacing this equation into the first equation we have,

dx2dX2=dXCdXdXdX=dX(CI)dX=dX2EdX{\displaystyle {\begin{aligned}d\mathbf {x} ^{2}-d\mathbf {X} ^{2}&=d\mathbf {X} \cdot \mathbf {C} \cdot d\mathbf {X} -d\mathbf {X} \cdot d\mathbf {X} \\&=d\mathbf {X} \cdot (\mathbf {C} -\mathbf {I} )\cdot d\mathbf {X} \\&=d\mathbf {X} \cdot 2\mathbf {E} \cdot d\mathbf {X} \\\end{aligned}}}or(dx)2(dX)2=xjXKxjXLdXKdXLdXMdXM=(xjXKxjXLδKL)dXKdXL=2EKLdXKdXL{\displaystyle {\begin{aligned}(dx)^{2}-(dX)^{2}&={\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}\,dX_{K}\,dX_{L}-dX_{M}\,dX_{M}\\&=\left({\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}-\delta _{KL}\right)\,dX_{K}\,dX_{L}\\&=2E_{KL}\,dX_{K}\,dX_{L}\end{aligned}}}whereEKL{\displaystyle E_{KL}\,\!}, are the components of a second-order tensor called theGreen – St-Venant strain tensor or theLagrangian finite strain tensor,E=12(CI)orEKL=12(xjXKxjXLδKL){\displaystyle \mathbf {E} ={\frac {1}{2}}(\mathbf {C} -\mathbf {I} )\qquad {\text{or}}\qquad E_{KL}={\frac {1}{2}}\left({\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}-\delta _{KL}\right)}

In the Eulerian description, using the spatial coordinates as the frame of reference, the linear transformation between the differential lines isdX=Xxdx=F1dx=HdxordXM=XMxndxn{\displaystyle d\mathbf {X} ={\frac {\partial \mathbf {X} }{\partial \mathbf {x} }}d\mathbf {x} =\mathbf {F} ^{-1}\,d\mathbf {x} =\mathbf {H} \,d\mathbf {x} \qquad {\text{or}}\qquad dX_{M}={\frac {\partial X_{M}}{\partial x_{n}}}\,dx_{n}}whereXMxn{\displaystyle {\frac {\partial X_{M}}{\partial x_{n}}}} are the components of thespatial deformation gradient tensor,H{\displaystyle \mathbf {H} \,\!}. Thus we have

dX2=dXdX=F1dxF1dx=dxFTF1dx=dxcdxor(dX)2=dXMdXM=XMxrXMxsdxrdxs=crsdxrdxs{\displaystyle {\begin{aligned}d\mathbf {X} ^{2}&=d\mathbf {X} \cdot d\mathbf {X} \\&=\mathbf {F} ^{-1}\cdot d\mathbf {x} \cdot \mathbf {F} ^{-1}\cdot d\mathbf {x} \\&=d\mathbf {x} \cdot \mathbf {F} ^{-T}\mathbf {F} ^{-1}\cdot d\mathbf {x} \\&=d\mathbf {x} \cdot \mathbf {c} \cdot d\mathbf {x} \end{aligned}}\qquad {\text{or}}\qquad {\begin{aligned}(dX)^{2}&=dX_{M}\,dX_{M}\\&={\frac {\partial X_{M}}{\partial x_{r}}}{\frac {\partial X_{M}}{\partial x_{s}}}\,dx_{r}\,dx_{s}\\&=c_{rs}\,dx_{r}\,dx_{s}\\\end{aligned}}}where the second order tensorcrs{\displaystyle c_{rs}} is calledCauchy's deformation tensor,c=FTF1{\displaystyle \mathbf {c} =\mathbf {F} ^{-T}\mathbf {F} ^{-1}\,\!}. Then we have,

dx2dX2=dxdxdxcdx=dx(Ic)dx=dx2edx{\displaystyle {\begin{aligned}d\mathbf {x} ^{2}-d\mathbf {X} ^{2}&=d\mathbf {x} \cdot d\mathbf {x} -d\mathbf {x} \cdot \mathbf {c} \cdot d\mathbf {x} \\&=d\mathbf {x} \cdot (\mathbf {I} -\mathbf {c} )\cdot d\mathbf {x} \\&=d\mathbf {x} \cdot 2\mathbf {e} \cdot d\mathbf {x} \\\end{aligned}}}or(dx)2(dX)2=dxjdxjXMxrXMxsdxrdxs=(δrsXMxrXMxs)dxrdxs=2ersdxrdxs{\displaystyle {\begin{aligned}(dx)^{2}-(dX)^{2}&=dx_{j}\,dx_{j}-{\frac {\partial X_{M}}{\partial x_{r}}}{\frac {\partial X_{M}}{\partial x_{s}}}\,dx_{r}\,dx_{s}\\&=\left(\delta _{rs}-{\frac {\partial X_{M}}{\partial x_{r}}}{\frac {\partial X_{M}}{\partial x_{s}}}\right)\,dx_{r}\,dx_{s}\\&=2e_{rs}\,dx_{r}\,dx_{s}\end{aligned}}}

whereers{\displaystyle e_{rs}\,\!}, are the components of a second-order tensor called theEulerian-Almansi finite strain tensor,e=12(Ic)orers=12(δrsXMxrXMxs){\displaystyle \mathbf {e} ={\frac {1}{2}}(\mathbf {I} -\mathbf {c} )\qquad {\text{or}}\qquad e_{rs}={\frac {1}{2}}\left(\delta _{rs}-{\frac {\partial X_{M}}{\partial x_{r}}}{\frac {\partial X_{M}}{\partial x_{s}}}\right)}

Both the Lagrangian and Eulerian finite strain tensors can be conveniently expressed in terms of thedisplacement gradient tensor. For the Lagrangian strain tensor, first we differentiate the displacement vectoru(X,t){\displaystyle \mathbf {u} (\mathbf {X} ,t)} with respect to the material coordinatesXM{\displaystyle X_{M}} to obtain thematerial displacement gradient tensor,Xu{\displaystyle \nabla _{\mathbf {X} }\mathbf {u} }

u(X,t)=x(X,t)XXu=FIF=Xu+Iorui=xiδiJXJδiJUJ=xiδiJXJxi=δiJ(UJ+XJ)xiXK=δiJ(UJXK+δJK)=uiXK+δiK{\displaystyle {\begin{aligned}\mathbf {u} (\mathbf {X} ,t)&=\mathbf {x} (\mathbf {X} ,t)-\mathbf {X} \\\nabla _{\mathbf {X} }\mathbf {u} &=\mathbf {F} -\mathbf {I} \\\mathbf {F} &=\nabla _{\mathbf {X} }\mathbf {u} +\mathbf {I} \\\end{aligned}}\qquad {\text{or}}\qquad {\begin{aligned}u_{i}&=x_{i}-\delta _{iJ}X_{J}\\\delta _{iJ}U_{J}&=x_{i}-\delta _{iJ}X_{J}\\x_{i}&=\delta _{iJ}\left(U_{J}+X_{J}\right)\\{\frac {\partial x_{i}}{\partial X_{K}}}&=\delta _{iJ}\left({\frac {\partial U_{J}}{\partial X_{K}}}+\delta _{JK}\right)\\&={\frac {\partial u_{i}}{\partial X_{K}}}+\delta _{iK}\end{aligned}}}

Replacing this equation into the expression for the Lagrangian finite strain tensor we haveE=12(FTFI)=12[{(Xu)T+I}(Xu+I)I]=12[(Xu)T+Xu+(Xu)TXu]{\displaystyle {\begin{aligned}\mathbf {E} &={\frac {1}{2}}\left(\mathbf {F} ^{T}\mathbf {F} -\mathbf {I} \right)\\&={\frac {1}{2}}\left[\left\{(\nabla _{\mathbf {X} }\mathbf {u} )^{T}+\mathbf {I} \right\}\left(\nabla _{\mathbf {X} }\mathbf {u} +\mathbf {I} \right)-\mathbf {I} \right]\\&={\frac {1}{2}}\left[(\nabla _{\mathbf {X} }\mathbf {u} )^{T}+\nabla _{\mathbf {X} }\mathbf {u} +(\nabla _{\mathbf {X} }\mathbf {u} )^{T}\cdot \nabla _{\mathbf {X} }\mathbf {u} \right]\\\end{aligned}}}orEKL=12(xjXKxjXLδKL)=12[δjM(UMXK+δMK)δjN(UNXL+δNL)δKL]=12[δMN(UMXK+δMK)(UNXL+δNL)δKL]=12[(UMXK+δMK)(UMXL+δML)δKL]=12(UKXL+ULXK+UMXKUMXL){\displaystyle {\begin{aligned}E_{KL}&={\frac {1}{2}}\left({\frac {\partial x_{j}}{\partial X_{K}}}{\frac {\partial x_{j}}{\partial X_{L}}}-\delta _{KL}\right)\\&={\frac {1}{2}}\left[\delta _{jM}\left({\frac {\partial U_{M}}{\partial X_{K}}}+\delta _{MK}\right)\delta _{jN}\left({\frac {\partial U_{N}}{\partial X_{L}}}+\delta _{NL}\right)-\delta _{KL}\right]\\&={\frac {1}{2}}\left[\delta _{MN}\left({\frac {\partial U_{M}}{\partial X_{K}}}+\delta _{MK}\right)\left({\frac {\partial U_{N}}{\partial X_{L}}}+\delta _{NL}\right)-\delta _{KL}\right]\\&={\frac {1}{2}}\left[\left({\frac {\partial U_{M}}{\partial X_{K}}}+\delta _{MK}\right)\left({\frac {\partial U_{M}}{\partial X_{L}}}+\delta _{ML}\right)-\delta _{KL}\right]\\&={\frac {1}{2}}\left({\frac {\partial U_{K}}{\partial X_{L}}}+{\frac {\partial U_{L}}{\partial X_{K}}}+{\frac {\partial U_{M}}{\partial X_{K}}}{\frac {\partial U_{M}}{\partial X_{L}}}\right)\end{aligned}}}

Similarly, the Eulerian-Almansi finite strain tensor can be expressed as

eij=12(uixj+ujxiukxiukxj){\displaystyle e_{ij}={\frac {1}{2}}\left({\frac {\partial u_{i}}{\partial x_{j}}}+{\frac {\partial u_{j}}{\partial x_{i}}}-{\frac {\partial u_{k}}{\partial x_{i}}}{\frac {\partial u_{k}}{\partial x_{j}}}\right)}

Seth–Hill family of generalized strain tensors

[edit]

B. R. Seth from theIndian Institute of Technology Kharagpur was the first to show that the Green and Almansi strain tensors are special cases of a more generalstrain measure.[10][11] The idea was further expanded upon byRodney Hill in 1968.[12] The Seth–Hill family of strain measures (also called Doyle-Ericksen tensors)[13] can be expressed as

E(m)=12m(U2mI)=12m[CmI]{\displaystyle \mathbf {E} _{(m)}={\frac {1}{2m}}(\mathbf {U} ^{2m}-\mathbf {I} )={\frac {1}{2m}}\left[\mathbf {C} ^{m}-\mathbf {I} \right]}

For different values ofm{\displaystyle m} we have:

The second-order approximation of these tensors isE(m)=ε+12(u)Tu(1m)εTε{\displaystyle \mathbf {E} _{(m)}={\boldsymbol {\varepsilon }}+{\tfrac {1}{2}}(\nabla \mathbf {u} )^{T}\cdot \nabla \mathbf {u} -(1-m){\boldsymbol {\varepsilon }}^{T}\cdot {\boldsymbol {\varepsilon }}}whereε{\displaystyle {\boldsymbol {\varepsilon }}} is the infinitesimal strain tensor.

Many other different definitions of tensorsE{\displaystyle \mathbf {E} } are admissible, provided that they all satisfy the conditions that:[14]

An example is the set of tensorsE(n)=(UnUn)/2n{\displaystyle \mathbf {E} ^{(n)}=\left({\mathbf {U} }^{n}-{\mathbf {U} }^{-n}\right)/2n}which do not belong to the Seth–Hill class, but have the same 2nd-order approximation as the Seth–Hill measures atm=0{\displaystyle m=0} for any value ofn{\displaystyle n}.[15]

Physical interpretation of the finite strain tensor

[edit]

The diagonal componentsEKL{\displaystyle E_{KL}} of the Lagrangian finite strain tensor are related to the normal strain, e.g.

E11=e(I1)+12e(I1)2{\displaystyle E_{11}=e_{(\mathbf {I} _{1})}+{\frac {1}{2}}e_{(\mathbf {I} _{1})}^{2}}

wheree(I1){\displaystyle e_{(\mathbf {I} _{1})}} is the normal strain or engineering strain in the directionI1{\displaystyle \mathbf {I} _{1}\,\!}.

The off-diagonal componentsEKL{\displaystyle E_{KL}} of the Lagrangian finite strain tensor are related to shear strain, e.g.

E12=122E11+12E22+1sinϕ12{\displaystyle E_{12}={\frac {1}{2}}{\sqrt {2E_{11}+1}}{\sqrt {2E_{22}+1}}\sin \phi _{12}}

whereϕ12{\displaystyle \phi _{12}} is the change in the angle between two line elements that were originally perpendicular with directionsI1{\displaystyle \mathbf {I} _{1}} andI2{\displaystyle \mathbf {I} _{2}\,\!}, respectively.

Under certain circumstances, i.e. small displacements and small displacement rates, the components of the Lagrangian finite strain tensor may be approximated by the components of theinfinitesimal strain tensor

Derivation of the physical interpretation of the Lagrangian and Eulerian finite strain tensors

The stretch ratio for the differential elementdX=dXN{\displaystyle d\mathbf {X} =dX\mathbf {N} } (Figure) in the direction of the unit vectorN{\displaystyle \mathbf {N} } at the material pointP{\displaystyle P\,\!}, in the undeformed configuration, is defined as

Λ(N)=dxdX{\displaystyle \Lambda _{(\mathbf {N} )}={\frac {dx}{dX}}}

wheredx{\displaystyle dx} is the deformed magnitude of the differential elementdX{\displaystyle d\mathbf {X} \,\!}.

Similarly, the stretch ratio for the differential elementdx=dxn{\displaystyle d\mathbf {x} =dx\mathbf {n} } (Figure), in the direction of the unit vectorn{\displaystyle \mathbf {n} } at the material pointp{\displaystyle p\,\!}, in the deformed configuration, is defined as1Λ(n)=dXdx{\displaystyle {\frac {1}{\Lambda _{(\mathbf {n} )}}}={\frac {dX}{dx}}}

The square of the stretch ratio is defined asΛ(N)2=(dxdX)2{\displaystyle \Lambda _{(\mathbf {N} )}^{2}=\left({\frac {dx}{dX}}\right)^{2}}

Knowing that(dx)2=CKLdXKdXL{\displaystyle (dx)^{2}=C_{KL}dX_{K}dX_{L}}we haveΛ(N)2=CKLNKNL{\displaystyle \Lambda _{(\mathbf {N} )}^{2}=C_{KL}N_{K}N_{L}}whereNK{\displaystyle N_{K}} andNL{\displaystyle N_{L}} are unit vectors.

The normal strain or engineering straineN{\displaystyle e_{\mathbf {N} }} in any directionN{\displaystyle \mathbf {N} } can be expressed as a function of the stretch ratio,

e(N)=dxdXdX=Λ(N)1{\displaystyle e_{(\mathbf {N} )}={\frac {dx-dX}{dX}}=\Lambda _{(\mathbf {N} )}-1}

Thus, the normal strain in the directionI1{\displaystyle \mathbf {I} _{1}} at the material pointP{\displaystyle P} may be expressed in terms of the stretch ratio as

e(I1)=dx1dX1dX1=Λ(I1)1=C111=δ11+2E111=1+2E111{\displaystyle {\begin{aligned}e_{(\mathbf {I} _{1})}={\frac {dx_{1}-dX_{1}}{dX_{1}}}&=\Lambda _{(\mathbf {I} _{1})}-1\\&={\sqrt {C_{11}}}-1={\sqrt {\delta _{11}+2E_{11}}}-1\\&={\sqrt {1+2E_{11}}}-1\end{aligned}}}

solving forE11{\displaystyle E_{11}} we have

2E11=(dx1)2(dX1)2(dX1)2E11=(dx1dX1dX1)+12(dx1dX1dX1)2=e(I1)+12e(I1)2{\displaystyle {\begin{aligned}2E_{11}&={\frac {(dx_{1})^{2}-(dX_{1})^{2}}{(dX_{1})^{2}}}\\E_{11}&=\left({\frac {dx_{1}-dX_{1}}{dX_{1}}}\right)+{\frac {1}{2}}\left({\frac {dx_{1}-dX_{1}}{dX_{1}}}\right)^{2}\\&=e_{(\mathbf {I} _{1})}+{\frac {1}{2}}e_{(\mathbf {I} _{1})}^{2}\end{aligned}}}

Theshear strain, or change in angle between two line elementsdX1{\displaystyle d\mathbf {X} _{1}} anddX2{\displaystyle d\mathbf {X} _{2}} initially perpendicular, and oriented in the principal directionsI1{\displaystyle \mathbf {I} _{1}} andI2{\displaystyle \mathbf {I} _{2}\,\!}, respectively, can also be expressed as a function of the stretch ratio. From thedot product between the deformed linesdx1{\displaystyle d\mathbf {x} _{1}} anddx2{\displaystyle d\mathbf {x} _{2}} we have

dx1dx2=dx1dx2cosθ12FdX1FdX2=dX1FTFdX1dX2FTFdX2cosθ12dX1FTFdX2dX1dX2=dX1FTFdX1dX2FTFdX2dX1dX2cosθ12I1CI2=ΛI1ΛI2cosθ12{\displaystyle {\begin{aligned}d\mathbf {x} _{1}\cdot d\mathbf {x} _{2}&=dx_{1}dx_{2}\cos \theta _{12}\\\mathbf {F} \cdot d\mathbf {X} _{1}\cdot \mathbf {F} \cdot d\mathbf {X} _{2}&={\sqrt {d\mathbf {X} _{1}\cdot \mathbf {F} ^{T}\cdot \mathbf {F} \cdot d\mathbf {X} _{1}}}\cdot {\sqrt {d\mathbf {X} _{2}\cdot \mathbf {F} ^{T}\cdot \mathbf {F} \cdot d\mathbf {X} _{2}}}\cos \theta _{12}\\{\frac {d\mathbf {X} _{1}\cdot \mathbf {F} ^{T}\cdot \mathbf {F} \cdot d\mathbf {X} _{2}}{dX_{1}dX_{2}}}&={\frac {{\sqrt {d\mathbf {X} _{1}\cdot \mathbf {F} ^{T}\cdot \mathbf {F} \cdot d\mathbf {X} _{1}}}\cdot {\sqrt {d\mathbf {X} _{2}\cdot \mathbf {F} ^{T}\cdot \mathbf {F} \cdot d\mathbf {X} _{2}}}}{dX_{1}dX_{2}}}\cos \theta _{12}\\\mathbf {I} _{1}\cdot \mathbf {C} \cdot \mathbf {I} _{2}&=\Lambda _{\mathbf {I} _{1}}\Lambda _{\mathbf {I} _{2}}\cos \theta _{12}\end{aligned}}}

whereθ12{\displaystyle \theta _{12}} is the angle between the linesdx1{\displaystyle d\mathbf {x} _{1}} anddx2{\displaystyle d\mathbf {x} _{2}} in the deformed configuration. Definingϕ12{\displaystyle \phi _{12}} as the shear strain or reduction in the angle between two line elements that were originally perpendicular, we have

ϕ12=π2θ12{\displaystyle \phi _{12}={\frac {\pi }{2}}-\theta _{12}}thus,cosθ12=sinϕ12{\displaystyle \cos \theta _{12}=\sin \phi _{12}}thenI1CI2=ΛI1ΛI2sinϕ12{\displaystyle \mathbf {I} _{1}\cdot \mathbf {C} \cdot \mathbf {I} _{2}=\Lambda _{\mathbf {I} _{1}}\Lambda _{\mathbf {I} _{2}}\sin \phi _{12}}

or

C12=C11C22sinϕ122E12+δ12=2E11+12E22+1sinϕ12E12=122E11+12E22+1sinϕ12{\displaystyle {\begin{aligned}C_{12}&={\sqrt {C_{11}}}{\sqrt {C_{22}}}\sin \phi _{12}\\2E_{12}+\delta _{12}&={\sqrt {2E_{11}+1}}{\sqrt {2E_{22}+1}}\sin \phi _{12}\\E_{12}&={\frac {1}{2}}{\sqrt {2E_{11}+1}}{\sqrt {2E_{22}+1}}\sin \phi _{12}\end{aligned}}}

Compatibility conditions

[edit]
Main article:Compatibility (mechanics)

The problem of compatibility in continuum mechanics involves the determination of allowable single-valued continuous fields on bodies. These allowable conditions leave the body without unphysical gaps or overlaps after a deformation. Most such conditions apply to simply-connected bodies. Additional conditions are required for the internal boundaries of multiply connected bodies.

Compatibility of the deformation gradient

[edit]

The necessary and sufficient conditions for the existence of a compatibleF{\displaystyle {\boldsymbol {F}}} field over a simply connected body are×F=0{\displaystyle {\boldsymbol {\nabla }}\times {\boldsymbol {F}}={\boldsymbol {0}}}

Compatibility of the right Cauchy–Green deformation tensor

[edit]

The necessary and sufficient conditions for the existence of a compatibleC{\displaystyle {\boldsymbol {C}}} field over a simply connected body areRαβργ:=Xρ[(X)Γαβγ]Xβ[(X)Γαργ]+(X)Γμργ(X)Γαβμ(X)Γμβγ(X)Γαρμ=0{\displaystyle R_{\alpha \beta \rho }^{\gamma }:={\frac {\partial }{\partial X^{\rho }}}[\,_{(X)}\Gamma _{\alpha \beta }^{\gamma }]-{\frac {\partial }{\partial X^{\beta }}}[\,_{(X)}\Gamma _{\alpha \rho }^{\gamma }]+\,_{(X)}\Gamma _{\mu \rho }^{\gamma }\,_{(X)}\Gamma _{\alpha \beta }^{\mu }-\,_{(X)}\Gamma _{\mu \beta }^{\gamma }\,_{(X)}\Gamma _{\alpha \rho }^{\mu }=0}We can show these are the mixed components of theRiemann–Christoffel curvature tensor. Therefore, the necessary conditions forC{\displaystyle {\boldsymbol {C}}}-compatibility are that the Riemann–Christoffel curvature of the deformation is zero.

Compatibility of the left Cauchy–Green deformation tensor

[edit]

General sufficiency conditions for the left Cauchy–Green deformation tensor in three dimensions has been discussed in several works.[16]

See also

[edit]

References

[edit]
  1. ^A. Yavari, J.E. Marsden, and M. Ortiz,On spatial and material covariant balance laws in elasticity, Journal of Mathematical Physics, 47, 2006, 042903; pp. 1–53.
  2. ^Eduardo de Souza Neto; Djordje Peric; Owens, David (2008).Computational methods for plasticity : theory and applications. Chichester, West Sussex, UK: Wiley. p. 65.ISBN 978-0-470-69452-7.
  3. ^abcdeA. Kaye, R. F. T. Stepto, W. J. Work, J. V. Aleman (Spain), A. Ya. Malkin (1998)."Definition of terms relating to the non-ultimate mechanical properties of polymers".Pure Appl. Chem.70 (3):701–754.doi:10.1351/pac199870030701.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^Eduardo N. Dvorkin, Marcela B. Goldschmit, 2006Nonlinear Continua, p. 25, SpringerISBN 3-540-24985-0.
  5. ^Jirásek,Milan; Bažant, Z. P. (2002)Inelastic analysis of structures, Wiley, p. 463ISBN 0-471-98716-6
  6. ^J. N. Reddy, David K. Gartling (2000)The finite element method in heat transfer and fluid dynamics, p. 317, CRC PressISBN 1-4200-8598-0.
  7. ^Lubliner, Jacob (2008).Plasticity Theory(PDF) (Revised ed.). Dover Publications.ISBN 978-0-486-46290-5. Archived fromthe original(PDF) on 2010-03-31.
  8. ^Belytschko, Ted; Liu, Wing Kam; Moran, Brian (2000).Nonlinear Finite Elements for Continua and Structures (reprint with corrections, 2006 ed.). John Wiley & Sons Ltd. pp. 92–94.ISBN 978-0-471-98773-4.
  9. ^Zeidi, Mahdi; Kim, Chun IL (2018). "Mechanics of an elastic solid reinforced with bidirectional fiber in finite plane elastostatics: complete analysis".Continuum Mechanics and Thermodynamics.30 (3):573–592.Bibcode:2018CMT....30..573Z.doi:10.1007/s00161-018-0623-0.ISSN 1432-0959.S2CID 253674037.
  10. ^Seth, B. R. (1961),"Generalized strain measure with applications to physical problems",MRC Technical Summary Report #248, Mathematics Research Center, United States Army, University of Wisconsin:1–18, archived fromthe original on August 22, 2013
  11. ^Seth, B. R. (1962), "Generalized strain measure with applications to physical problems",IUTAM Symposium on Second Order Effects in Elasticity, Plasticity and Fluid Mechanics, Haifa, 1962.
  12. ^Hill, R. (1968), "On constitutive inequalities for simple materials—I",Journal of the Mechanics and Physics of Solids,16 (4):229–242,Bibcode:1968JMPSo..16..229H,doi:10.1016/0022-5096(68)90031-8
  13. ^T.C. Doyle and J.L. Eriksen (1956). "Non-linear elasticity."Advances in Applied Mechanics 4, 53–115.
  14. ^Z.P. Bažant and L. Cedolin (1991).Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories. Oxford Univ. Press, New York (2nd ed. Dover Publ., New York 2003; 3rd ed., World Scientific 2010).
  15. ^Z.P. Bažant (1998). "Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate."Journal of Materials of Technology ASME, 120 (April), 131–136.
  16. ^Acharya, A. (1999)."On Compatibility Conditions for the Left Cauchy–Green Deformation Field in Three Dimensions"(PDF).Journal of Elasticity.56 (2):95–105.doi:10.1023/A:1007653400249.S2CID 116767781.;Blume, J. A. (1989). "Compatibility conditions for a left Cauchy–Green strain field".Journal of Elasticity.21 (3):271–308.doi:10.1007/BF00045780.S2CID 54889553.

Further reading

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Finite_strain_theory&oldid=1337480303"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp