Concept in field theory mathematics
Inmathematics , the(field) norm is a particular mapping defined infield theory , which maps elements of a largerfield into asubfield .
LetK be a field andL afinite extension (and hence analgebraic extension ) ofK .
The fieldL is then afinite-dimensional vector space overK .
Multiplication byα , an element ofL ,
m α : L → L {\displaystyle m_{\alpha }\colon L\to L} m α ( x ) = α x {\displaystyle m_{\alpha }(x)=\alpha x} ,is aK -linear transformation of this vector space into itself.
Thenorm ,N L /K (α ), is defined as thedeterminant of this linear transformation.[ 1]
IfL /K is aGalois extension , one may compute the norm ofα ∈L as the product of all theGalois conjugates ofα :
N L / K ( α ) = ∏ σ ∈ Gal ( L / K ) σ ( α ) , {\displaystyle \operatorname {N} _{L/K}(\alpha )=\!\prod _{\sigma \in \operatorname {Gal} (L/K)}\!\!\sigma (\alpha ),} where Gal(L /K ) denotes theGalois group ofL /K .[ 2] (Note that there may be a repetition in the terms of the product.)
For a general field extensionL /K , and nonzeroα inL , letσ 1 (α ), ..., σn (α ) be theroots of theminimal polynomial ofα overK (roots listed with multiplicity and lying in some extension field ofL ); then
N L / K ( α ) = ( ∏ j = 1 n σ j ( α ) ) [ L : K ( α ) ] {\displaystyle \operatorname {N} _{L/K}(\alpha )={\biggl (}\prod _{j=1}^{n}\sigma _{j}(\alpha ){\biggr )}^{[L:K(\alpha )]}} .IfL /K isseparable , then each root appears only once in the product (though the exponent, thedegree [L :K (α )], may still be greater than 1).
Quadratic field extensions [ edit ] One of the basic examples of norms comes fromquadratic field extensionsQ ( a ) / Q {\displaystyle \mathbb {Q} ({\sqrt {a}})/\mathbb {Q} } wherea {\displaystyle a} is asquare-free integer .
Then, the multiplication map bya {\displaystyle {\sqrt {a}}} on an elementx + y ⋅ a {\displaystyle x+y\cdot {\sqrt {a}}} is
a ⋅ ( x + y ⋅ a ) = y ⋅ a + x ⋅ a . {\displaystyle {\sqrt {a}}\cdot (x+y\cdot {\sqrt {a}})=y\cdot a+x\cdot {\sqrt {a}}.} The elementx + y ⋅ a {\displaystyle x+y\cdot {\sqrt {a}}} can be represented by the vector
[ x y ] , {\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}},} since there is a direct sum decompositionQ ( a ) = Q ⊕ Q ⋅ a {\displaystyle \mathbb {Q} ({\sqrt {a}})=\mathbb {Q} \oplus \mathbb {Q} \cdot {\sqrt {a}}} as aQ {\displaystyle \mathbb {Q} } -vector space.
Thematrix ofm a {\displaystyle m_{\sqrt {a}}} is then
m a = [ 0 a 1 0 ] {\displaystyle m_{\sqrt {a}}={\begin{bmatrix}0&a\\1&0\end{bmatrix}}} and the norm isN Q ( a ) / Q ( a ) = − a {\displaystyle N_{\mathbb {Q} ({\sqrt {a}})/\mathbb {Q} }({\sqrt {a}})=-a} , since it is the determinant of this matrix.
Consider thenumber field K = Q ( 2 ) {\displaystyle K=\mathbb {Q} ({\sqrt {2}})} .
The Galois group ofK {\displaystyle K} overQ {\displaystyle \mathbb {Q} } has orderd = 2 {\displaystyle d=2} and is generated by the element which sends2 {\displaystyle {\sqrt {2}}} to− 2 {\displaystyle -{\sqrt {2}}} . So the norm of1 + 2 {\displaystyle 1+{\sqrt {2}}} is:
( 1 + 2 ) ( 1 − 2 ) = − 1. {\displaystyle (1+{\sqrt {2}})(1-{\sqrt {2}})=-1.} The field norm can also be obtained without the Galois group.
Fix aQ {\displaystyle \mathbb {Q} } -basis ofQ ( 2 ) {\displaystyle \mathbb {Q} ({\sqrt {2}})} , say:
{ 1 , 2 } {\displaystyle \{1,{\sqrt {2}}\}} .Then multiplication by the number1 + 2 {\displaystyle 1+{\sqrt {2}}} sends
1 {\displaystyle 1} to1 + 2 {\displaystyle 1+{\sqrt {2}}} and2 {\displaystyle {\sqrt {2}}} to2 + 2 {\displaystyle 2+{\sqrt {2}}} .So the determinant of "multiplying by1 + 2 {\displaystyle 1+{\sqrt {2}}} " is the determinant of the matrix which sends the vector
[ 1 0 ] {\displaystyle {\begin{bmatrix}1\\0\end{bmatrix}}} (corresponding to the first basis element, i.e., 1) to[ 1 1 ] {\displaystyle {\begin{bmatrix}1\\1\end{bmatrix}}} ,[ 0 1 ] {\displaystyle {\begin{bmatrix}0\\1\end{bmatrix}}} (corresponding to the second basis element, i.e.,2 {\displaystyle {\sqrt {2}}} ) to[ 2 1 ] {\displaystyle {\begin{bmatrix}2\\1\end{bmatrix}}} ,viz.:
[ 1 2 1 1 ] . {\displaystyle {\begin{bmatrix}1&2\\1&1\end{bmatrix}}.} The determinant of this matrix is −1.
p -th root field extensions[ edit ] Another easy class of examples comes from field extensions of the formQ ( a p ) / Q {\displaystyle \mathbb {Q} ({\sqrt[{p}]{a}})/\mathbb {Q} } where the prime factorization ofa ∈ Q {\displaystyle a\in \mathbb {Q} } contains nop {\displaystyle p} -th powers, forp {\displaystyle p} a fixed odd prime.
The multiplication map bya p {\displaystyle {\sqrt[{p}]{a}}} of an element is
m a p ( x ) = a p ⋅ ( a 0 + a 1 a p + a 2 a 2 p + ⋯ + a p − 1 a p − 1 p ) = a 0 a p + a 1 a 2 p + a 2 a 3 p + ⋯ + a p − 1 a {\displaystyle {\begin{aligned}m_{\sqrt[{p}]{a}}(x)&={\sqrt[{p}]{a}}\cdot (a_{0}+a_{1}{\sqrt[{p}]{a}}+a_{2}{\sqrt[{p}]{a^{2}}}+\cdots +a_{p-1}{\sqrt[{p}]{a^{p-1}}})\\&=a_{0}{\sqrt[{p}]{a}}+a_{1}{\sqrt[{p}]{a^{2}}}+a_{2}{\sqrt[{p}]{a^{3}}}+\cdots +a_{p-1}a\end{aligned}}}
giving the matrix
[ 0 0 ⋯ 0 a 1 0 ⋯ 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ 1 0 ] {\displaystyle {\begin{bmatrix}0&0&\cdots &0&a\\1&0&\cdots &0&0\\0&1&\cdots &0&0\\\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&\cdots &1&0\end{bmatrix}}}
The determinant gives the norm
N Q ( a p ) / Q ( a p ) = ( − 1 ) p − 1 a = a . {\displaystyle N_{\mathbb {Q} ({\sqrt[{p}]{a}})/\mathbb {Q} }({\sqrt[{p}]{a}})=(-1)^{p-1}a=a.} Complex numbers over the reals [ edit ] The field norm from thecomplex numbers to thereal numbers sends
x +iy to
x 2 +y 2 ,because the Galois group ofC {\displaystyle \mathbb {C} } overR {\displaystyle \mathbb {R} } has two elements,
and taking the product yields(x +iy )(x −iy ) =x 2 +y 2 .
LetL = GF(q n ) be a finite extension of afinite field K = GF(q ).
SinceL /K is a Galois extension, ifα is inL , then the norm ofα is the product of all the Galois conjugates ofα , i.e.[ 3]
N L / K ( α ) = α ⋅ α q ⋅ α q 2 ⋯ α q n − 1 = α ( q n − 1 ) / ( q − 1 ) . {\displaystyle \operatorname {N} _{L/K}(\alpha )=\alpha \cdot \alpha ^{q}\cdot \alpha ^{q^{2}}\cdots \alpha ^{q^{n-1}}=\alpha ^{(q^{n}-1)/(q-1)}.} In this setting we have the additional properties,[ 4]
Properties of the norm [ edit ] Several properties of the norm function hold for any finite extension.[ 5] [ 6]
The normN L /K :L * →K * is agroup homomorphism from the multiplicative group ofL to the multiplicative group ofK , that is
N L / K ( α β ) = N L / K ( α ) N L / K ( β ) for all α , β ∈ L ∗ . {\displaystyle \operatorname {N} _{L/K}(\alpha \beta )=\operatorname {N} _{L/K}(\alpha )\operatorname {N} _{L/K}(\beta ){\text{ for all }}\alpha ,\beta \in L^{*}.} Furthermore, ifa ∈ K {\displaystyle a\in K} :
N L / K ( a α ) = a [ L : K ] N L / K ( α ) for all α ∈ L , {\displaystyle \operatorname {N} _{L/K}(a\alpha )=a^{[L:K]}\operatorname {N} _{L/K}(\alpha ){\text{ for all }}\alpha \in L,} andN L / K ( a ) = a [ L : K ] . {\displaystyle \operatorname {N} _{L/K}(a)=a^{[L:K]}.} Composition with field extensions [ edit ] Additionally, the norm behaves well intowers of fields :
ifM is a finite extension ofL , then the norm fromM toK is just the composition of the norm fromM toL with the norm fromL toK , i.e.
N M / K = N L / K ∘ N M / L . {\displaystyle \operatorname {N} _{M/K}=\operatorname {N} _{L/K}\circ \operatorname {N} _{M/L}.} Reduction of the norm [ edit ] The norm of an element in an arbitrary field extension can be reduced to an easier computation if the degree of the field extension is already known. This is
N L / K ( α ) = N K ( α ) / K ( α ) [ L : K ( α ) ] {\displaystyle N_{L/K}(\alpha )=N_{K(\alpha )/K}(\alpha )^{[L:K(\alpha )]}} [ 6]
For example, forα = 2 {\displaystyle \alpha ={\sqrt {2}}} in the field extensionL = Q ( 2 , ζ 3 ) , K = Q {\displaystyle L=\mathbb {Q} ({\sqrt {2}},\zeta _{3}),K=\mathbb {Q} } , the norm ofα {\displaystyle \alpha } is
N Q ( 2 , ζ 3 ) / Q ( 2 ) = N Q ( 2 ) / Q ( 2 ) [ Q ( 2 , ζ 3 ) : Q ( 2 ) ] = ( − 2 ) 2 = 4 {\displaystyle {\begin{aligned}N_{\mathbb {Q} ({\sqrt {2}},\zeta _{3})/\mathbb {Q} }({\sqrt {2}})&=N_{\mathbb {Q} ({\sqrt {2}})/\mathbb {Q} }({\sqrt {2}})^{[\mathbb {Q} ({\sqrt {2}},\zeta _{3}):\mathbb {Q} ({\sqrt {2}})]}\\&=(-2)^{2}\\&=4\end{aligned}}}
since the degree of the field extensionL / K ( α ) {\displaystyle L/K(\alpha )} is2 {\displaystyle 2} .
ForO K {\displaystyle {\mathcal {O}}_{K}} thering of integers of analgebraic number field K {\displaystyle K} , an elementα ∈ O K {\displaystyle \alpha \in {\mathcal {O}}_{K}} is aunit if and only ifN K / Q ( α ) = ± 1 {\displaystyle N_{K/\mathbb {Q} }(\alpha )=\pm 1} .
For instance
N Q ( ζ 3 ) / Q ( ζ 3 ) = 1 {\displaystyle N_{\mathbb {Q} (\zeta _{3})/\mathbb {Q} }(\zeta _{3})=1} where
ζ 3 3 = 1 {\displaystyle \zeta _{3}^{3}=1} .Thus, any number fieldK {\displaystyle K} whose ring of integersO K {\displaystyle {\mathcal {O}}_{K}} containsζ 3 {\displaystyle \zeta _{3}} has it as a unit.
The norm of analgebraic integer is again an integer, because it is equal (up to sign) to the constant term of the characteristic polynomial.
Inalgebraic number theory one defines also norms forideals . This is done in such a way that ifI is a nonzero ideal ofO K , the ring of integers of the number fieldK ,N (I ) is the number of residue classes inO K / I {\displaystyle O_{K}/I} – i.e. the cardinality of thisfinite ring . Hence thisideal norm is always a positive integer.
WhenI is aprincipal ideal αOK thenN (I ) is equal to theabsolute value of the norm toQ ofα , forα analgebraic integer .
Lidl, Rudolf;Niederreiter, Harald (1997) [1983],Finite Fields , Encyclopedia of Mathematics and its Applications, vol. 20 (Second ed.),Cambridge University Press ,ISBN 0-521-39231-4 ,Zbl 0866.11069 Mullen, Gary L.; Panario, Daniel (2013),Handbook of Finite Fields , CRC Press,ISBN 978-1-4398-7378-6 Roman, Steven (2006),Field theory ,Graduate Texts in Mathematics , vol. 158 (Second ed.), Springer, Chapter 8,ISBN 978-0-387-27677-9 ,Zbl 1172.12001 Rotman, Joseph J. (2002),Advanced Modern Algebra , Prentice Hall,ISBN 978-0-13-087868-7