Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Falling and rising factorials

From Wikipedia, the free encyclopedia
(Redirected fromFalling factorial)
Mathematical functions

"Rising power" redirects here. For the description of a sovereign state or union of states with significant rising influence in global affairs, seeemerging power.

Inmathematics, thefalling factorial (sometimes called thedescending factorial,[1]falling sequential product, orlower factorial) is defined as the polynomial(x)n=xn_=x(x1)(x2)(xn+1)n factors=k=1n(xk+1)=k=0n1(xk).{\displaystyle {\begin{aligned}(x)_{n}=x^{\underline {n}}&=\overbrace {x(x-1)(x-2)\cdots (x-n+1)} ^{n{\text{ factors}}}\\&=\prod _{k=1}^{n}(x-k+1)=\prod _{k=0}^{n-1}(x-k).\end{aligned}}}

Therising factorial (sometimes called thePochhammer function,Pochhammer polynomial,ascending factorial,[1]rising sequential product, orupper factorial) is defined asx(n)=xn¯=x(x+1)(x+2)(x+n1)n factors=k=1n(x+k1)=k=0n1(x+k).{\displaystyle {\begin{aligned}x^{(n)}=x^{\overline {n}}&=\overbrace {x(x+1)(x+2)\cdots (x+n-1)} ^{n{\text{ factors}}}\\&=\prod _{k=1}^{n}(x+k-1)=\prod _{k=0}^{n-1}(x+k).\end{aligned}}}

The value of each is taken to be 1 (anempty product) whenn=0{\displaystyle n=0}. These symbols are collectively calledfactorial powers.[2]

ThePochhammer symbol, introduced byLeo August Pochhammer, is the notation(x)n{\displaystyle (x)_{n}}, wheren is anon-negative integer. It may representeither the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used(x)n{\displaystyle (x)_{n}} with yet another meaning, namely to denote thebinomial coefficient(xn){\displaystyle {\tbinom {x}{n}}}.[3]

In this article, the symbol(x)n{\displaystyle (x)_{n}} is used to represent the falling factorial, and the symbolx(n){\displaystyle x^{(n)}} is used for the rising factorial. These conventions are used incombinatorics,[4]althoughKnuth's underline and overline notationsxn_{\displaystyle x^{\underline {n}}} andxn¯{\displaystyle x^{\overline {n}}} are increasingly popular.[2][5]In the theory ofspecial functions (in particular thehypergeometric function) and in the standard reference workAbramowitz and Stegun, the Pochhammer symbol(x)n{\displaystyle (x)_{n}} is used to represent the rising factorial.[6][7]

Whenx{\displaystyle x} is a positive integer,(x)n{\displaystyle (x)_{n}} gives the number ofn-permutations (sequences of distinct elements) from anx-element set, or equivalently the number ofinjective functions from a set of sizen{\displaystyle n} to a set of sizex{\displaystyle x}. The rising factorialx(n){\displaystyle x^{(n)}} gives the number ofpartitions of ann{\displaystyle n}-element set intox{\displaystyle x} ordered sequences (possibly empty).[a]

Examples and combinatorial interpretation

[edit]

The first few falling factorials are as follows:(x)0=1(x)1=x(x)2=x(x1)=x2x(x)3=x(x1)(x2)=x33x2+2x(x)4=x(x1)(x2)(x3)=x46x3+11x26x{\displaystyle {\begin{alignedat}{2}(x)_{0}&&&=1\\(x)_{1}&&&=x\\(x)_{2}&=x(x-1)&&=x^{2}-x\\(x)_{3}&=x(x-1)(x-2)&&=x^{3}-3x^{2}+2x\\(x)_{4}&=x(x-1)(x-2)(x-3)&&=x^{4}-6x^{3}+11x^{2}-6x\end{alignedat}}}The first few rising factorials are as follows:x(0)=1x(1)=xx(2)=x(x+1)=x2+xx(3)=x(x+1)(x+2)=x3+3x2+2xx(4)=x(x+1)(x+2)(x+3)=x4+6x3+11x2+6x{\displaystyle {\begin{alignedat}{2}x^{(0)}&&&=1\\x^{(1)}&&&=x\\x^{(2)}&=x(x+1)&&=x^{2}+x\\x^{(3)}&=x(x+1)(x+2)&&=x^{3}+3x^{2}+2x\\x^{(4)}&=x(x+1)(x+2)(x+3)&&=x^{4}+6x^{3}+11x^{2}+6x\end{alignedat}}}The coefficients that appear in the expansions areStirling numbers of the first kind (see below).

When the variablex{\displaystyle x} is a positive integer, the number(x)n{\displaystyle (x)_{n}} is equal to the number ofn-permutations from a set ofx items, that is, the number of ways of choosing an ordered list of lengthn consisting of distinct elements drawn from a collection of sizex{\displaystyle x}. For example,(8)3=8×7×6=336{\displaystyle (8)_{3}=8\times 7\times 6=336} is the number of different podiums—assignments of gold, silver, and bronze medals—possible in an eight-person race. On the other hand,x(n){\displaystyle x^{(n)}} is "the number of ways to arrangen{\displaystyle n} flags onx{\displaystyle x} flagpoles",[8]where all flags must be used and each flagpole can have any number of flags. Equivalently, this is the number of ways to partition a set of sizen{\displaystyle n} (the flags) intox{\displaystyle x} distinguishable parts (the poles), with a linear order on the elements assigned to each part (the order of the flags on a given pole).

Properties

[edit]

The rising and falling factorials are simply related to one another:(x)n=(xn+1)(n)=(1)n(x)(n),x(n)=(x+n1)n=(1)n(x)n.{\displaystyle {\begin{alignedat}{2}{(x)}_{n}&={(x-n+1)}^{(n)}&&=(-1)^{n}(-x)^{(n)},\\x^{(n)}&={(x+n-1)}_{n}&&=(-1)^{n}(-x)_{n}.\end{alignedat}}}

Falling and rising factorials of integers are directly related to the ordinaryfactorial:n!=1(n)=(n)n,(m)n=m!(mn)!,m(n)=(m+n1)!(m1)!.{\displaystyle {\begin{aligned}n!&=1^{(n)}=(n)_{n},\\[6pt](m)_{n}&={\frac {m!}{(m-n)!}},\\[6pt]m^{(n)}&={\frac {(m+n-1)!}{(m-1)!}}.\end{aligned}}}

Rising factorials of half integers are directly related to thedouble factorial:[12](n)=(2n1)!!2n,[2m+12](n)=(2(n+m)1)!!2n(2m1)!!.{\displaystyle {\begin{aligned}\left[{\frac {1}{2}}\right]^{(n)}={\frac {(2n-1)!!}{2^{n}}},\quad \left[{\frac {2m+1}{2}}\right]^{(n)}={\frac {(2(n+m)-1)!!}{2^{n}(2m-1)!!}}.\end{aligned}}}

The falling and rising factorials can be used to express abinomial coefficient:(x)nn!=(xn),x(n)n!=(x+n1n).{\displaystyle {\begin{aligned}{\frac {(x)_{n}}{n!}}&={\binom {x}{n}},\\[6pt]{\frac {x^{(n)}}{n!}}&={\binom {x+n-1}{n}}.\end{aligned}}}

Thus many identities on binomial coefficients carry over to the falling and rising factorials.

The rising and falling factorials are well defined in anyunitalring, and thereforex{\displaystyle x} can be taken to be, for example, acomplex number, including negative integers, or apolynomial with complex coefficients, or anycomplex-valued function.

Real numbers and negativen

[edit]

The falling factorial can be extended toreal values ofx{\displaystyle x} using thegamma function providedx{\displaystyle x} andx+n{\displaystyle x+n} are real numbers that are not negative integers:(x)n=Γ(x+1)Γ(xn+1) ,{\displaystyle (x)_{n}={\frac {\Gamma (x+1)}{\Gamma (x-n+1)}}\ ,}and so can the rising factorial:x(n)=Γ(x+n)Γ(x) .{\displaystyle x^{(n)}={\frac {\Gamma (x+n)}{\Gamma (x)}}\ .}

Calculus

[edit]

Falling factorials appear in multipledifferentiation of simple power functions:(ddx)nxa=(a)nxan.{\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}\right)^{n}x^{a}=(a)_{n}\cdot x^{a-n}.}

The rising factorial is also integral to the definition of thehypergeometric function: The hypergeometric function is defined for|z|<1{\displaystyle |z|<1} by thepower series2F1(a,b;c;z)=n=0a(n)b(n)c(n)znn!{\displaystyle {}_{2}F_{1}(a,b;c;z)=\sum _{n=0}^{\infty }{\frac {a^{(n)}b^{(n)}}{c^{(n)}}}{\frac {z^{n}}{n!}}}provided thatc0,1,2,{\displaystyle c\neq 0,-1,-2,\ldots }. Note, however, that the hypergeometric function literature typically uses the notation(a)n{\displaystyle (a)_{n}} for rising factorials.

Connection coefficients and identities

[edit]

Falling and rising factorials are closely related toStirling numbers. Indeed, expanding the product revealsStirling numbers of the first kind(x)n=k=0ns(n,k)xk=k=0n[nk](1)nkxkx(n)=k=0n[nk]xk{\displaystyle {\begin{aligned}(x)_{n}&=\sum _{k=0}^{n}s(n,k)x^{k}\\&=\sum _{k=0}^{n}{\begin{bmatrix}n\\k\end{bmatrix}}(-1)^{n-k}x^{k}\\x^{(n)}&=\sum _{k=0}^{n}{\begin{bmatrix}n\\k\end{bmatrix}}x^{k}\\\end{aligned}}}

And the inverse relations usesStirling numbers of the second kindxn=k=0n{nk}(x)k=k=0n{nk}(1)nkx(k).{\displaystyle {\begin{aligned}x^{n}&=\sum _{k=0}^{n}{\begin{Bmatrix}n\\k\end{Bmatrix}}(x)_{k}\\&=\sum _{k=0}^{n}{\begin{Bmatrix}n\\k\end{Bmatrix}}(-1)^{n-k}x^{(k)}.\end{aligned}}}

The falling and rising factorials are related to one another through theLah numbersL(n,k)=(n1k1)n!k!{\textstyle L(n,k)={\binom {n-1}{k-1}}{\frac {n!}{k!}}}:[9]x(n)=k=0nL(n,k)(x)k(x)n=k=0nL(n,k)(1)nkx(k){\displaystyle {\begin{aligned}x^{(n)}&=\sum _{k=0}^{n}L(n,k)(x)_{k}\\(x)_{n}&=\sum _{k=0}^{n}L(n,k)(-1)^{n-k}x^{(k)}\end{aligned}}}

Since the falling factorials are a basis for thepolynomial ring, one can express the product of two of them as alinear combination of falling factorials:[10](x)m(x)n=k=0m(mk)(nk)k!(x)m+nk .{\displaystyle (x)_{m}(x)_{n}=\sum _{k=0}^{m}{\binom {m}{k}}{\binom {n}{k}}k!\cdot (x)_{m+n-k}\ .}

The coefficients(mk)(nk)k!{\displaystyle {\tbinom {m}{k}}{\tbinom {n}{k}}k!} are calledconnection coefficients, and have a combinatorial interpretation as the number of ways to identify (or "glue together")k elements each from a set of sizem and a set of sizen.

There is also a connection formula for the ratio of two rising factorials given byx(n)x(i)=(x+i)(ni),for ni.{\displaystyle {\frac {x^{(n)}}{x^{(i)}}}=(x+i)^{(n-i)},\quad {\text{for }}n\geq i.}

Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities:[11](p 52)

(x)m+n=(x)m(xm)n=(x)n(xn)mx(m+n)=x(m)(x+m)(n)=x(n)(x+n)(m)x(n)=Γ(xn)Γ(x)=(xn1)!(x1)!=1(xn)(n)=1(x1)n=1(x1)(x2)(xn)(x)n=Γ(x+1)Γ(x+n+1)=x!(x+n)!=1(x+n)n=1(x+1)(n)=1(x+1)(x+2)(x+n){\displaystyle {\begin{aligned}(x)_{m+n}&=(x)_{m}(x-m)_{n}=(x)_{n}(x-n)_{m}\\[6pt]x^{(m+n)}&=x^{(m)}(x+m)^{(n)}=x^{(n)}(x+n)^{(m)}\\[6pt]x^{(-n)}&={\frac {\Gamma (x-n)}{\Gamma (x)}}={\frac {(x-n-1)!}{(x-1)!}}={\frac {1}{(x-n)^{(n)}}}={\frac {1}{(x-1)_{n}}}={\frac {1}{(x-1)(x-2)\cdots (x-n)}}\\[6pt](x)_{-n}&={\frac {\Gamma (x+1)}{\Gamma (x+n+1)}}={\frac {x!}{(x+n)!}}={\frac {1}{(x+n)_{n}}}={\frac {1}{(x+1)^{(n)}}}={\frac {1}{(x+1)(x+2)\cdots (x+n)}}\end{aligned}}}

Finally,duplication andmultiplication formulas for the falling and rising factorials provide the next relations:(x)k+mn=x(k)mmnj=0m1(xkjm)n,for mNx(k+mn)=x(k)mmnj=0m1(x+k+jm)(n),for mN(ax+b)(n)=xnj=0n1(a+b+jx),for xZ+(2x)(2n)=22nx(n)(x+12)(n).{\displaystyle {\begin{aligned}(x)_{k+mn}&=x^{(k)}m^{mn}\prod _{j=0}^{m-1}\left({\frac {x-k-j}{m}}\right)_{n}\,,&{\text{for }}m&\in \mathbb {N} \\[6pt]x^{(k+mn)}&=x^{(k)}m^{mn}\prod _{j=0}^{m-1}\left({\frac {x+k+j}{m}}\right)^{(n)},&{\text{for }}m&\in \mathbb {N} \\[6pt](ax+b)^{(n)}&=x^{n}\prod _{j=0}^{n-1}\left(a+{\frac {b+j}{x}}\right),&{\text{for }}x&\in \mathbb {Z} ^{+}\\[6pt](2x)^{(2n)}&=2^{2n}x^{(n)}\left(x+{\frac {1}{2}}\right)^{(n)}.\end{aligned}}}

Relation to umbral calculus

[edit]

The falling factorial occurs in a formula which representspolynomials using the forwarddifference operator Δf(x) =def f(x+1)f(x) ,{\displaystyle \ \operatorname {\Delta } f(x)~{\stackrel {\mathrm {def} }{=}}~f(x{+}1)-f(x)\ ,} which in form is an exact analogue toTaylor's theorem: Compare the series expansion fromumbral calculus

f(t)=n=0 1 n!Δxnf(x)|x=0 (t)n{\displaystyle \qquad f(t)=\sum _{n=0}^{\infty }\ {\frac {1}{\ n!}}\operatorname {\Delta } _{x}^{n}f(x){\bigg \vert }_{x=0}\ (t)_{n}\qquad }

with the corresponding series fromdifferential calculus

f(t)=n=0 1 n![ ddx]nf(x) |x=0 tn .{\displaystyle \qquad f(t)=\sum _{n=0}^{\infty }\ {\frac {1}{\ n!}}\left[{\frac {\ \operatorname {d} }{\operatorname {d} x}}\right]^{n}f(x)\ {\bigg \vert }_{x=0}\ t^{n}~.}

In this formula and in many other places, the falling factorial (x)n {\displaystyle \ (x)_{n}\ } in the calculus offinite differences plays the role of xn {\displaystyle \ x^{n}\ } in differential calculus. For another example, note the similarity of Δ(x)n=n (x)n1 {\displaystyle ~\operatorname {\Delta } (x)_{n}=n\ (x)_{n-1}~} to  ddx xn=n xn1 .{\displaystyle ~{\frac {\ \operatorname {d} }{\operatorname {d} x}}\ x^{n}=n\ x^{n-1}~.}

A corresponding relation holds for the rising factorial and the backward difference operator.

The study of analogies of this type is known asumbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory ofpolynomial sequences of binomial type andSheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations:

 (a+b)n=j=0n (nj) (a)nj (b)j (a+b)(n)=j=0n (nj) a(nj) b(j)  {\displaystyle \ {\begin{aligned}(a+b)_{n}&=\sum _{j=0}^{n}\ {\binom {n}{j}}\ (a)_{n-j}\ (b)_{j}\ \\[6pt](a+b)^{(n)}&=\sum _{j=0}^{n}\ {\binom {n}{j}}\ a^{(n-j)}\ b^{(j)}\ \end{aligned}}\ }

where the coefficients are the same as those in thebinomial theorem.

Similarly, the generating function of Pochhammer polynomials then amounts to the umbral exponential,

 n=0 (x)n  tn  n! = ( 1+t )x ,{\displaystyle \ \sum _{n=0}^{\infty }\ (x)_{n}\ {\frac {~t^{n}\ }{\ n!}}\ =\ \left(\ 1+t\ \right)^{x}\ ,}

since

 Δx( 1+t )x = t( 1+t )x .{\displaystyle \ \operatorname {\Delta } _{x}\left(\ 1+t\ \right)^{x}\ =\ t\cdot \left(\ 1+t\ \right)^{x}~.}

Alternative notations

[edit]

An alternative notation for the rising factorialxm¯(x)+m(x)m=x(x+1)(x+m1)m factorsfor integer m0{\displaystyle x^{\overline {m}}\equiv (x)_{+m}\equiv (x)_{m}=\overbrace {x(x+1)\ldots (x+m-1)} ^{m{\text{ factors}}}\quad {\text{for integer }}m\geq 0}

and for the falling factorialxm_(x)m=x(x1)(xm+1)m factorsfor integer m0{\displaystyle x^{\underline {m}}\equiv (x)_{-m}=\overbrace {x(x-1)\ldots (x-m+1)} ^{m{\text{ factors}}}\quad {\text{for integer }}m\geq 0}

goes back to A. Capelli (1893) and L. Toscano (1939), respectively.[2] Graham, Knuth, and Patashnik[11](pp 47, 48)propose to pronounce these expressions as "x{\displaystyle x} to them{\displaystyle m} rising" and "x{\displaystyle x} to them{\displaystyle m} falling", respectively.

An alternative notation for the rising factorialx(n){\displaystyle x^{(n)}} is the less common(x)n+{\displaystyle (x)_{n}^{+}}. When(x)n+{\displaystyle (x)_{n}^{+}} is used to denote the rising factorial, the notation(x)n{\displaystyle (x)_{n}^{-}} is typically used for the ordinary falling factorial, to avoid confusion.[3]

Generalizations

[edit]

The Pochhammer symbol has a generalized version called thegeneralized Pochhammer symbol, used in multivariateanalysis. There is also aq-analogue, theq-Pochhammer symbol.

For any fixed arithmetic functionf:NC{\displaystyle f:\mathbb {N} \rightarrow \mathbb {C} } and symbolic parametersx,t, related generalized factorial products of the form

(x)n,f,t:=k=0n1(x+f(k)tk){\displaystyle (x)_{n,f,t}:=\prod _{k=0}^{n-1}\left(x+{\frac {f(k)}{t^{k}}}\right)}

may be studied from the point of view of the classes of generalizedStirling numbers of the first kind defined by the following coefficients of the powers ofx in the expansions of(x)n,f,t and then by the next corresponding triangular recurrence relation:

[nk]f,t=[xk1](x)n,f,t=f(n1)t1n[n1k]f,t+[n1k1]f,t+δn,0δk,0.{\displaystyle {\begin{aligned}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{f,t}&=\left[x^{k-1}\right](x)_{n,f,t}\\&=f(n-1)t^{1-n}\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{f,t}+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{f,t}+\delta _{n,0}\delta _{k,0}.\end{aligned}}}

These coefficients satisfy a number of analogous properties to those for theStirling numbers of the first kind as well as recurrence relations and functional equations related to thef-harmonic numbers,[12]Fn(r)(t):=kntkf(k)r.{\displaystyle F_{n}^{(r)}(t):=\sum _{k\leq n}{\frac {t^{k}}{f(k)^{r}}}\,.}

See also

[edit]

References

[edit]
  1. ^Here the parts are distinct; for example, whenx =n = 2, the(2)(2) = 6 partitions are(12,){\displaystyle (12,-)},(21,){\displaystyle (21,-)},(1,2){\displaystyle (1,2)},(2,1){\displaystyle (2,1)},(,12){\displaystyle (-,12)}, and(,21){\displaystyle (-,21)}, where − denotes an empty part.
  1. ^abSteffensen, J.F. (17 March 2006).Interpolation (2nd ed.). Dover Publications. p. 8.ISBN 0-486-45009-0. — A reprint of the 1950 edition by Chelsea Publishing.
  2. ^abcKnuth, D.E.The Art of Computer Programming. Vol. 1 (3rd ed.). p. 50.
  3. ^abKnuth, D.E. (1992). "Two notes on notation".American Mathematical Monthly.99 (5):403–422.arXiv:math/9205211.doi:10.2307/2325085.JSTOR 2325085.S2CID 119584305. The remark about the Pochhammer symbol is on page 414.
  4. ^Olver, P.J. (1999).Classical Invariant Theory. Cambridge University Press. p. 101.ISBN 0-521-55821-2.MR 1694364.
  5. ^Harris; Hirst; Mossinghoff (2008).Combinatorics and Graph Theory. Springer. ch. 2.ISBN 978-0-387-79710-6.
  6. ^Abramowitz, Milton; Stegun, Irene A., eds. (December 1972) [June 1964].Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of StandardsApplied Mathematics Series. Vol. 55. Washington, DC:United States Department of Commerce. p. 256 eqn. 6.1.22.LCCN 64-60036.
  7. ^Slater, Lucy J. (1966).Generalized Hypergeometric Functions. Cambridge University Press. Appendix I.MR 0201688. — Gives a useful list of formulas for manipulating the rising factorial in(x)n notation.
  8. ^Feller, William.An Introduction to Probability Theory and Its Applications. Vol. 1. Ch. 2.
  9. ^"Introduction to the factorials and binomials".Wolfram Functions Site.
  10. ^Rosas, Mercedes H. (2002). "Specializations of MacMahon symmetric functions and the polynomial algebra".Discrete Math.246 (1–3):285–293.doi:10.1016/S0012-365X(01)00263-1.hdl:11441/41678.
  11. ^abGraham, Ronald L.;Knuth, Donald E. &Patashnik, Oren (1988).Concrete Mathematics. Reading, MA: Addison-Wesley. pp. 47, 48, 52.ISBN 0-201-14236-8.
  12. ^Schmidt, Maxie D. (2018). "Combinatorial identities for generalized Stirling numbers expandingf-factorial functions and thef-harmonic numbers".Journal of Integer Sequences.21 (2) 18.2.7.arXiv:1611.04708v2.MR 3779776.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Falling_and_rising_factorials&oldid=1278314528"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp