Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

F-distribution

From Wikipedia, the free encyclopedia
Continuous probability distribution
This article is about the central F-distribution. For the generalized distribution, seenoncentral F-distribution. For other uses, seeF-ratio.
Not to be confused withF-statistics as used in population genetics.
Fisher–Snedecor
Probability density function
Cumulative distribution function
Parametersd1,d2 > 0 deg. of freedom
Supportx(0,+){\displaystyle x\in (0,+\infty )\;} ifd1=1{\displaystyle d_{1}=1}, otherwisex[0,+){\displaystyle x\in [0,+\infty )\;}
PDF(d1x)d1d2d2(d1x+d2)d1+d2xB(d12,d22){\displaystyle {\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!}
CDFId1xd1x+d2(d12,d22){\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}
Meand2d22{\displaystyle {\frac {d_{2}}{d_{2}-2}}\!}
ford2 > 2
Moded12d1d2d2+2{\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}}
ford1 > 2
Variance2d22(d1+d22)d1(d22)2(d24){\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!}
ford2 > 4
Skewness(2d1+d22)8(d24)(d26)d1(d1+d22){\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!}
ford2 > 6
Excess kurtosissee text
EntropylnΓ(d12)+lnΓ(d22)lnΓ(d1+d22)+(1d12)ψ(1+d12)(1+d22)ψ(1+d22)+(d1+d22)ψ(d1+d22)+lnd2d1{\displaystyle {\begin{aligned}&\ln \Gamma {\left({\tfrac {d_{1}}{2}}\right)}+\ln \Gamma {\left({\tfrac {d_{2}}{2}}\right)}-\ln \Gamma {\left({\tfrac {d_{1}+d_{2}}{2}}\right)}\\&+\left(1-{\tfrac {d_{1}}{2}}\right)\psi {\left(1+{\tfrac {d_{1}}{2}}\right)}-\left(1+{\tfrac {d_{2}}{2}}\right)\psi {\left(1+{\tfrac {d_{2}}{2}}\right)}\\&+\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi {\left({\tfrac {d_{1}+d_{2}}{2}}\right)}+\ln {\frac {d_{2}}{d_{1}}}\end{aligned}}}[1]
MGFdoes not exist, raw moments defined in text and in[2][3]
CFsee text

Inprobability theory andstatistics, theF-distribution orF-ratio, also known asSnedecor'sF distribution or theFisher–Snedecor distribution (afterRonald Fisher andGeorge W. Snedecor), is acontinuous probability distribution that arises frequently as thenull distribution of atest statistic, most notably in theanalysis of variance (ANOVA) and otherF-tests.[2][3][4][5]

Definitions

[edit]

TheF-distribution withd1 andd2 degrees of freedom is the distribution of

X=U1/d1U2/d2{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}

whereU1{\textstyle U_{1}} andU2{\textstyle U_{2}} areindependentrandom variables withchi-square distributions with respective degrees of freedomd1{\textstyle d_{1}} andd2{\textstyle d_{2}}.

It can be shown to follow that theprobability density function (pdf) forX is given by

f(x;d1,d2)=(d1x)d1d2d2(d1x+d2)d1+d2xB(d12,d22)=1B(d12,d22)(d1d2)d12xd121(1+d1d2x)d1+d22{\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\[5pt]&={\frac {1}{\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}}

forrealx > 0. HereB{\displaystyle \mathrm {B} } is thebeta function. In many applications, the parametersd1 andd2 arepositive integers, but the distribution is well-defined for positive real values of these parameters.

Thecumulative distribution function is

F(x;d1,d2)=Id1x/(d1x+d2)(d12,d22),{\displaystyle F(x;d_{1},d_{2})=I_{d_{1}x/(d_{1}x+d_{2})}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),}

whereI is theregularized incomplete beta function.

Properties

[edit]

The expectation, variance, and other details about the F(d1,d2) are given in the sidebox; ford2 > 8, theexcess kurtosis is

γ2=12d1(5d222)(d1+d22)+(d24)(d22)2d1(d26)(d28)(d1+d22).{\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}.}

Thek-th moment of an F(d1,d2) distribution exists and is finite only when 2k <d2 and it is equal to[6]

μX(k)=(d2d1)kΓ(d12+k)Γ(d12)Γ(d22k)Γ(d22).{\displaystyle \mu _{X}(k)=\left({\frac {d_{2}}{d_{1}}}\right)^{k}{\frac {\Gamma \left({\tfrac {d_{1}}{2}}+k\right)}{\Gamma \left({\tfrac {d_{1}}{2}}\right)}}{\frac {\Gamma \left({\tfrac {d_{2}}{2}}-k\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}.}

TheF-distribution is a particularparametrization of thebeta prime distribution, which is also called the beta distribution of the second kind.

Thecharacteristic function is listed incorrectly in many standard references (e.g.,[3]). The correct expression[7] is

φd1,d2F(s)=Γ(d1+d22)Γ(d22)U(d12,1d22,d2d1ıs){\displaystyle \varphi _{d_{1},d_{2}}^{F}(s)={\frac {\Gamma {\left({\frac {d_{1}+d_{2}}{2}}\right)}}{\Gamma {\left({\tfrac {d_{2}}{2}}\right)}}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}

whereU(a,b,z) is theconfluent hypergeometric function of the second kind.

Related distributions

[edit]

Relation to the chi-squared distribution

[edit]

In instances where theF-distribution is used, for example in theanalysis of variance, independence ofU1{\displaystyle U_{1}} andU2{\displaystyle U_{2}} (defined above) might be demonstrated by applyingCochran's theorem.

Equivalently, since thechi-squared distribution is the sum of squares ofindependentstandard normal random variables, the random variable of theF-distribution may also be written

X=s12σ12÷s22σ22,{\displaystyle X={\frac {s_{1}^{2}}{\sigma _{1}^{2}}}\div {\frac {s_{2}^{2}}{\sigma _{2}^{2}}},}

wheres12=S12d1{\displaystyle s_{1}^{2}={\frac {S_{1}^{2}}{d_{1}}}} ands22=S22d2{\displaystyle s_{2}^{2}={\frac {S_{2}^{2}}{d_{2}}}},S12{\displaystyle S_{1}^{2}} is the sum of squares ofd1{\displaystyle d_{1}} random variables from normal distributionN(0,σ12){\displaystyle N(0,\sigma _{1}^{2})} andS22{\displaystyle S_{2}^{2}} is the sum of squares ofd2{\displaystyle d_{2}} random variables from normal distributionN(0,σ22){\displaystyle N(0,\sigma _{2}^{2})}.

In afrequentist context, a scaledF-distribution therefore gives the probabilityp(s12/s22σ12,σ22){\displaystyle p(s_{1}^{2}/s_{2}^{2}\mid \sigma _{1}^{2},\sigma _{2}^{2})}, with theF-distribution itself, without any scaling, applying whereσ12{\displaystyle \sigma _{1}^{2}} is being taken equal toσ22{\displaystyle \sigma _{2}^{2}}. This is the context in which theF-distribution most generally appears inF-tests: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.

The quantityX{\displaystyle X} has the same distribution in Bayesian statistics, if an uninformative rescaling-invariantJeffreys prior is taken for theprior probabilities ofσ12{\displaystyle \sigma _{1}^{2}} andσ22{\displaystyle \sigma _{2}^{2}}.[8] In this context, a scaledF-distribution thus gives the posterior probabilityp(σ22/σ12s12,s22){\displaystyle p(\sigma _{2}^{2}/\sigma _{1}^{2}\mid s_{1}^{2},s_{2}^{2})}, where the observed sumss12{\displaystyle s_{1}^{2}} ands22{\displaystyle s_{2}^{2}} are now taken as known.

In general

[edit]

See also

[edit]

References

[edit]
  1. ^Lazo, A.V.; Rathie, P. (1978). "On the entropy of continuous probability distributions".IEEE Transactions on Information Theory.24 (1). IEEE:120–122.doi:10.1109/tit.1978.1055832.
  2. ^abJohnson, Norman Lloyd; Samuel Kotz; N. Balakrishnan (1995).Continuous Univariate Distributions, Volume 2 (Section 27) (2nd ed.). Wiley.ISBN 0-471-58494-0.
  3. ^abcAbramowitz, Milton;Stegun, Irene Ann, eds. (1983) [June 1964]."Chapter 26".Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 946.ISBN 978-0-486-61272-0.LCCN 64-60036.MR 0167642.LCCN 65-12253.
  4. ^NIST (2006).Engineering Statistics Handbook – F Distribution
  5. ^Mood, Alexander; Franklin A. Graybill; Duane C. Boes (1974).Introduction to the Theory of Statistics (Third ed.). McGraw-Hill. pp. 246–249.ISBN 0-07-042864-6.
  6. ^Taboga, Marco."The F distribution".
  7. ^Phillips, P. C. B. (1982) "The true characteristic function of the F distribution,"Biometrika, 69: 261–264JSTOR 2335882
  8. ^Box, G. E. P.; Tiao, G. C. (1973).Bayesian Inference in Statistical Analysis. Addison-Wesley. p. 110.ISBN 0-201-00622-7.
  9. ^Mahmoudi, Amin; Javed, Saad Ahmed (October 2022)."Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach".Group Decision and Negotiation.31 (5):1051–1096.doi:10.1007/s10726-022-09790-1.ISSN 0926-2644.PMC 9409630.PMID 36042813.
  10. ^Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021)."The Modified-Half-Normal distribution: Properties and an efficient sampling scheme"(PDF).Communications in Statistics - Theory and Methods.52 (5):1591–1613.doi:10.1080/03610926.2021.1934700.ISSN 0361-0926.S2CID 237919587.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=F-distribution&oldid=1287000233"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp