Continuous probability distribution
Not to be confused with
F -statistics as used in population genetics.
Fisher–Snedecor Probability density function
Cumulative distribution function
Parameters d 1 ,d 2 > 0 deg. of freedomSupport x ∈ ( 0 , + ∞ ) {\displaystyle x\in (0,+\infty )\;} ifd 1 = 1 {\displaystyle d_{1}=1} , otherwisex ∈ [ 0 , + ∞ ) {\displaystyle x\in [0,+\infty )\;} PDF ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) {\displaystyle {\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!} CDF I d 1 x d 1 x + d 2 ( d 1 2 , d 2 2 ) {\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)} Mean d 2 d 2 − 2 {\displaystyle {\frac {d_{2}}{d_{2}-2}}\!} ford 2 > 2Mode d 1 − 2 d 1 d 2 d 2 + 2 {\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}} ford 1 > 2Variance 2 d 2 2 ( d 1 + d 2 − 2 ) d 1 ( d 2 − 2 ) 2 ( d 2 − 4 ) {\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!} ford 2 > 4Skewness ( 2 d 1 + d 2 − 2 ) 8 ( d 2 − 4 ) ( d 2 − 6 ) d 1 ( d 1 + d 2 − 2 ) {\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!} ford 2 > 6Excess kurtosis see text Entropy ln Γ ( d 1 2 ) + ln Γ ( d 2 2 ) − ln Γ ( d 1 + d 2 2 ) + ( 1 − d 1 2 ) ψ ( 1 + d 1 2 ) − ( 1 + d 2 2 ) ψ ( 1 + d 2 2 ) + ( d 1 + d 2 2 ) ψ ( d 1 + d 2 2 ) + ln d 2 d 1 {\displaystyle {\begin{aligned}&\ln \Gamma {\left({\tfrac {d_{1}}{2}}\right)}+\ln \Gamma {\left({\tfrac {d_{2}}{2}}\right)}-\ln \Gamma {\left({\tfrac {d_{1}+d_{2}}{2}}\right)}\\&+\left(1-{\tfrac {d_{1}}{2}}\right)\psi {\left(1+{\tfrac {d_{1}}{2}}\right)}-\left(1+{\tfrac {d_{2}}{2}}\right)\psi {\left(1+{\tfrac {d_{2}}{2}}\right)}\\&+\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi {\left({\tfrac {d_{1}+d_{2}}{2}}\right)}+\ln {\frac {d_{2}}{d_{1}}}\end{aligned}}} [ 1] MGF does not exist, raw moments defined in text and in[ 2] [ 3] CF see text
Inprobability theory andstatistics , theF -distribution orF -ratio , also known asSnedecor'sF distribution or theFisher–Snedecor distribution (afterRonald Fisher andGeorge W. Snedecor ), is acontinuous probability distribution that arises frequently as thenull distribution of atest statistic , most notably in theanalysis of variance (ANOVA) and otherF -tests .[ 2] [ 3] [ 4] [ 5]
TheF -distribution withd 1 andd 2 degrees of freedom is the distribution of
X = U 1 / d 1 U 2 / d 2 {\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}
whereU 1 {\textstyle U_{1}} andU 2 {\textstyle U_{2}} areindependent random variables withchi-square distributions with respective degrees of freedomd 1 {\textstyle d_{1}} andd 2 {\textstyle d_{2}} .
It can be shown to follow that theprobability density function (pdf) forX is given by
f ( x ; d 1 , d 2 ) = ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) = 1 B ( d 1 2 , d 2 2 ) ( d 1 d 2 ) d 1 2 x d 1 2 − 1 ( 1 + d 1 d 2 x ) − d 1 + d 2 2 {\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\[5pt]&={\frac {1}{\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}}
forreal x > 0. HereB {\displaystyle \mathrm {B} } is thebeta function . In many applications, the parametersd 1 andd 2 arepositive integers , but the distribution is well-defined for positive real values of these parameters.
Thecumulative distribution function is
F ( x ; d 1 , d 2 ) = I d 1 x / ( d 1 x + d 2 ) ( d 1 2 , d 2 2 ) , {\displaystyle F(x;d_{1},d_{2})=I_{d_{1}x/(d_{1}x+d_{2})}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),}
whereI is theregularized incomplete beta function .
The expectation, variance, and other details about the F(d 1 ,d 2 ) are given in the sidebox; ford 2 > 8, theexcess kurtosis is
γ 2 = 12 d 1 ( 5 d 2 − 22 ) ( d 1 + d 2 − 2 ) + ( d 2 − 4 ) ( d 2 − 2 ) 2 d 1 ( d 2 − 6 ) ( d 2 − 8 ) ( d 1 + d 2 − 2 ) . {\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}.}
Thek -th moment of an F(d 1 ,d 2 ) distribution exists and is finite only when 2k <d 2 and it is equal to[ 6]
μ X ( k ) = ( d 2 d 1 ) k Γ ( d 1 2 + k ) Γ ( d 1 2 ) Γ ( d 2 2 − k ) Γ ( d 2 2 ) . {\displaystyle \mu _{X}(k)=\left({\frac {d_{2}}{d_{1}}}\right)^{k}{\frac {\Gamma \left({\tfrac {d_{1}}{2}}+k\right)}{\Gamma \left({\tfrac {d_{1}}{2}}\right)}}{\frac {\Gamma \left({\tfrac {d_{2}}{2}}-k\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}.}
TheF -distribution is a particularparametrization of thebeta prime distribution , which is also called the beta distribution of the second kind.
Thecharacteristic function is listed incorrectly in many standard references (e.g.,[ 3] ). The correct expression[ 7] is
φ d 1 , d 2 F ( s ) = Γ ( d 1 + d 2 2 ) Γ ( d 2 2 ) U ( d 1 2 , 1 − d 2 2 , − d 2 d 1 ı s ) {\displaystyle \varphi _{d_{1},d_{2}}^{F}(s)={\frac {\Gamma {\left({\frac {d_{1}+d_{2}}{2}}\right)}}{\Gamma {\left({\tfrac {d_{2}}{2}}\right)}}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}
whereU (a ,b ,z ) is theconfluent hypergeometric function of the second kind.
Related distributions [ edit ] Relation to the chi-squared distribution [ edit ] In instances where theF -distribution is used, for example in theanalysis of variance , independence ofU 1 {\displaystyle U_{1}} andU 2 {\displaystyle U_{2}} (defined above) might be demonstrated by applyingCochran's theorem .
Equivalently, since thechi-squared distribution is the sum of squares ofindependent standard normal random variables, the random variable of theF -distribution may also be written
X = s 1 2 σ 1 2 ÷ s 2 2 σ 2 2 , {\displaystyle X={\frac {s_{1}^{2}}{\sigma _{1}^{2}}}\div {\frac {s_{2}^{2}}{\sigma _{2}^{2}}},}
wheres 1 2 = S 1 2 d 1 {\displaystyle s_{1}^{2}={\frac {S_{1}^{2}}{d_{1}}}} ands 2 2 = S 2 2 d 2 {\displaystyle s_{2}^{2}={\frac {S_{2}^{2}}{d_{2}}}} ,S 1 2 {\displaystyle S_{1}^{2}} is the sum of squares ofd 1 {\displaystyle d_{1}} random variables from normal distributionN ( 0 , σ 1 2 ) {\displaystyle N(0,\sigma _{1}^{2})} andS 2 2 {\displaystyle S_{2}^{2}} is the sum of squares ofd 2 {\displaystyle d_{2}} random variables from normal distributionN ( 0 , σ 2 2 ) {\displaystyle N(0,\sigma _{2}^{2})} .
In afrequentist context, a scaledF -distribution therefore gives the probabilityp ( s 1 2 / s 2 2 ∣ σ 1 2 , σ 2 2 ) {\displaystyle p(s_{1}^{2}/s_{2}^{2}\mid \sigma _{1}^{2},\sigma _{2}^{2})} , with theF -distribution itself, without any scaling, applying whereσ 1 2 {\displaystyle \sigma _{1}^{2}} is being taken equal toσ 2 2 {\displaystyle \sigma _{2}^{2}} . This is the context in which theF -distribution most generally appears inF -tests : where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.
The quantityX {\displaystyle X} has the same distribution in Bayesian statistics, if an uninformative rescaling-invariantJeffreys prior is taken for theprior probabilities ofσ 1 2 {\displaystyle \sigma _{1}^{2}} andσ 2 2 {\displaystyle \sigma _{2}^{2}} .[ 8] In this context, a scaledF -distribution thus gives the posterior probabilityp ( σ 2 2 / σ 1 2 ∣ s 1 2 , s 2 2 ) {\displaystyle p(\sigma _{2}^{2}/\sigma _{1}^{2}\mid s_{1}^{2},s_{2}^{2})} , where the observed sumss 1 2 {\displaystyle s_{1}^{2}} ands 2 2 {\displaystyle s_{2}^{2}} are now taken as known.
IfX ∼ χ d 1 2 {\displaystyle X\sim \chi _{d_{1}}^{2}} andY ∼ χ d 2 2 {\displaystyle Y\sim \chi _{d_{2}}^{2}} (Chi squared distribution ) areindependent , thenX / d 1 Y / d 2 ∼ F ( d 1 , d 2 ) {\displaystyle {\frac {X/d_{1}}{Y/d_{2}}}\sim \mathrm {F} (d_{1},d_{2})} IfX k ∼ Γ ( α k , β k ) {\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})\,} (Gamma distribution ) are independent, thenα 2 β 1 X 1 α 1 β 2 X 2 ∼ F ( 2 α 1 , 2 α 2 ) {\displaystyle {\frac {\alpha _{2}\beta _{1}X_{1}}{\alpha _{1}\beta _{2}X_{2}}}\sim \mathrm {F} (2\alpha _{1},2\alpha _{2})} IfX ∼ Beta ( d 1 / 2 , d 2 / 2 ) {\displaystyle X\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)} (Beta distribution ) thend 2 X d 1 ( 1 − X ) ∼ F ( d 1 , d 2 ) {\displaystyle {\frac {d_{2}X}{d_{1}(1-X)}}\sim \operatorname {F} (d_{1},d_{2})} Equivalently, ifX ∼ F ( d 1 , d 2 ) {\displaystyle X\sim F(d_{1},d_{2})} , thend 1 X / d 2 1 + d 1 X / d 2 ∼ Beta ( d 1 / 2 , d 2 / 2 ) {\displaystyle {\frac {d_{1}X/d_{2}}{1+d_{1}X/d_{2}}}\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)} . IfX ∼ F ( d 1 , d 2 ) {\displaystyle X\sim F(d_{1},d_{2})} , thend 1 d 2 X {\displaystyle {\frac {d_{1}}{d_{2}}}X} has abeta prime distribution :d 1 d 2 X ∼ β ′ ( d 1 2 , d 2 2 ) {\displaystyle {\frac {d_{1}}{d_{2}}}X\sim \operatorname {\beta ^{\prime }} \left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)} . IfX ∼ F ( d 1 , d 2 ) {\displaystyle X\sim F(d_{1},d_{2})} thenY = lim d 2 → ∞ d 1 X {\displaystyle Y=\lim _{d_{2}\to \infty }d_{1}X} has thechi-squared distribution χ d 1 2 {\displaystyle \chi _{d_{1}}^{2}} F ( d 1 , d 2 ) {\displaystyle F(d_{1},d_{2})} is equivalent to the scaledHotelling's T-squared distribution d 2 d 1 ( d 1 + d 2 − 1 ) T 2 ( d 1 , d 1 + d 2 − 1 ) {\displaystyle {\frac {d_{2}}{d_{1}(d_{1}+d_{2}-1)}}\operatorname {T} ^{2}(d_{1},d_{1}+d_{2}-1)} .IfX ∼ F ( d 1 , d 2 ) {\displaystyle X\sim F(d_{1},d_{2})} thenX − 1 ∼ F ( d 2 , d 1 ) {\displaystyle X^{-1}\sim F(d_{2},d_{1})} . IfX ∼ t ( n ) {\displaystyle X\sim t_{(n)}} —Student's t-distribution — then:X 2 ∼ F ( 1 , n ) X − 2 ∼ F ( n , 1 ) {\displaystyle {\begin{aligned}X^{2}&\sim \operatorname {F} (1,n)\\X^{-2}&\sim \operatorname {F} (n,1)\end{aligned}}} F -distribution is a special case of type 6Pearson distribution IfX {\displaystyle X} andY {\displaystyle Y} are independent, withX , Y ∼ {\displaystyle X,Y\sim } Laplace(μ ,b ) then| X − μ | | Y − μ | ∼ F ( 2 , 2 ) {\displaystyle {\frac {|X-\mu |}{|Y-\mu |}}\sim \operatorname {F} (2,2)} IfX ∼ F ( n , m ) {\displaystyle X\sim F(n,m)} thenlog X 2 ∼ FisherZ ( n , m ) {\displaystyle {\tfrac {\log {X}}{2}}\sim \operatorname {FisherZ} (n,m)} (Fisher's z-distribution ) ThenoncentralF -distribution simplifies to theF -distribution ifλ = 0 {\displaystyle \lambda =0} . The doublynoncentralF -distribution simplifies to theF -distribution ifλ 1 = λ 2 = 0 {\displaystyle \lambda _{1}=\lambda _{2}=0} IfQ X ( p ) {\displaystyle \operatorname {Q} _{X}(p)} is the quantilep forX ∼ F ( d 1 , d 2 ) {\displaystyle X\sim F(d_{1},d_{2})} andQ Y ( 1 − p ) {\displaystyle \operatorname {Q} _{Y}(1-p)} is the quantile1 − p {\displaystyle 1-p} forY ∼ F ( d 2 , d 1 ) {\displaystyle Y\sim F(d_{2},d_{1})} , thenQ X ( p ) = 1 Q Y ( 1 − p ) . {\displaystyle \operatorname {Q} _{X}(p)={\frac {1}{\operatorname {Q} _{Y}(1-p)}}.} F -distribution is an instance ofratio distributions W -distribution[ 9] is a unique parametrization of F-distribution.Beta prime distribution Chi-square distribution Chow test Gamma distribution Hotelling's T-squared distribution Wilks' lambda distribution Wishart distribution Modified half-normal distribution [ 10] with the pdf on( 0 , ∞ ) {\displaystyle (0,\infty )} is given asf ( x ) = 2 β α 2 x α − 1 exp ( − β x 2 + γ x ) Ψ ( α 2 , γ β ) {\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}} , whereΨ ( α , z ) = 1 Ψ 1 ( ( α , 1 2 ) ( 1 , 0 ) ; z ) {\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)} denotes theFox–Wright Psi function .^ Lazo, A.V.; Rathie, P. (1978). "On the entropy of continuous probability distributions".IEEE Transactions on Information Theory .24 (1). IEEE:120– 122.doi :10.1109/tit.1978.1055832 . ^a b Johnson, Norman Lloyd; Samuel Kotz; N. Balakrishnan (1995).Continuous Univariate Distributions, Volume 2 (Section 27) (2nd ed.). Wiley.ISBN 0-471-58494-0 . ^a b c Abramowitz, Milton ;Stegun, Irene Ann , eds. (1983) [June 1964]."Chapter 26" .Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 946.ISBN 978-0-486-61272-0 .LCCN 64-60036 .MR 0167642 .LCCN 65-12253 .^ NIST (2006).Engineering Statistics Handbook – F Distribution ^ Mood, Alexander; Franklin A. Graybill; Duane C. Boes (1974).Introduction to the Theory of Statistics (Third ed.). McGraw-Hill. pp. 246– 249.ISBN 0-07-042864-6 . ^ Taboga, Marco."The F distribution" . ^ Phillips, P. C. B. (1982) "The true characteristic function of the F distribution,"Biometrika , 69: 261–264JSTOR 2335882 ^ Box, G. E. P.; Tiao, G. C. (1973).Bayesian Inference in Statistical Analysis . Addison-Wesley. p. 110.ISBN 0-201-00622-7 . ^ Mahmoudi, Amin; Javed, Saad Ahmed (October 2022)."Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach" .Group Decision and Negotiation .31 (5):1051– 1096.doi :10.1007/s10726-022-09790-1 .ISSN 0926-2644 .PMC 9409630 .PMID 36042813 . ^ Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021)."The Modified-Half-Normal distribution: Properties and an efficient sampling scheme" (PDF) .Communications in Statistics - Theory and Methods .52 (5):1591– 1613.doi :10.1080/03610926.2021.1934700 .ISSN 0361-0926 .S2CID 237919587 .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate andsingular Families