Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Extranatural transformation

From Wikipedia, the free encyclopedia
Generalization of natural transformations

Inmathematics, specifically incategory theory, anextranatural transformation[1] is a generalization of the notion ofnatural transformation.

Definition

[edit]

LetF:A×Bop×BD{\displaystyle F:A\times B^{\mathrm {op} }\times B\rightarrow D} andG:A×Cop×CD{\displaystyle G:A\times C^{\mathrm {op} }\times C\rightarrow D} be twofunctors of categories.A familyη(a,b,c):F(a,b,b)G(a,c,c){\displaystyle \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c)} is said to benatural inaand extranatural inbandc if the following holds:

F(a,b,b)F(1,1,g)F(a,b,b)F(1,g,1)η(a,b,c)F(a,b,b)η(a,b,c)G(a,c,c){\displaystyle {\begin{matrix}F(a,b',b)&\xrightarrow {F(1,1,g)} &F(a,b',b')\\_{F(1,g,1)}\downarrow \qquad &&_{\eta (a,b',c)}\downarrow \qquad \\F(a,b,b)&\xrightarrow {\eta (a,b,c)} &G(a,c,c)\end{matrix}}}
F(a,b,b)η(a,b,c)G(a,c,c)η(a,b,c)G(1,h,1)G(a,c,c)G(1,1,h)G(a,c,c){\displaystyle {\begin{matrix}F(a,b,b)&\xrightarrow {\eta (a,b,c')} &G(a,c',c')\\_{\eta (a,b,c)}\downarrow \qquad &&_{G(1,h,1)}\downarrow \qquad \\G(a,c,c)&\xrightarrow {G(1,1,h)} &G(a,c,c')\end{matrix}}}

Properties

[edit]

Extranatural transformations can be used to define wedges and therebyends[2] (dually co-wedges and co-ends), by settingF{\displaystyle F} (duallyG{\displaystyle G}) constant.

Extranatural transformations can be defined in terms ofdinatural transformations, of which they are a special case.[2]

See also

[edit]

References

[edit]
  1. ^Eilenberg andKelly, A generalization of the functorial calculus, J. Algebra 3 366–375 (1966)
  2. ^abFosco Loregian,This is the (co)end, my only (co)friend, arXiv preprint[1]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Extranatural_transformation&oldid=1147520438"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp