Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Extended negative binomial distribution

From Wikipedia, the free encyclopedia
Probability distribution

Inprobability andstatistics theextended negative binomial distribution is adiscrete probability distribution extending thenegative binomial distribution. It is atruncated version of the negative binomial distribution[1] for which estimation methods have been studied.[2]

In the context ofactuarial science, the distribution appeared in its general form in a paper by K. Hess, A. Liewald and K.D. Schmidt[3] when they characterized all distributions for which the extendedPanjer recursion works. For the casem = 1, the distribution was already discussed by Willmot[4] and put into a parametrized family with thelogarithmic distribution and the negative binomial distribution by H.U. Gerber.[5]

Probability mass function

[edit]

For a natural numberm ≥ 1 and real parametersp,r with0 <p ≤ 1 andm <r < –m + 1, theprobability mass function of the ExtNegBin(m, r, p) distribution is given by

f(k;m,r,p)=0 for k{0,1,,m1}{\displaystyle f(k;m,r,p)=0\qquad {\text{ for }}k\in \{0,1,\ldots ,m-1\}}

and

f(k;m,r,p)=(k+r1k)pk(1p)rj=0m1(j+r1j)pjfor kN with km,{\displaystyle f(k;m,r,p)={\frac {{k+r-1 \choose k}p^{k}}{(1-p)^{-r}-\sum _{j=0}^{m-1}{j+r-1 \choose j}p^{j}}}\quad {\text{for }}k\in {\mathbb {N} }{\text{ with }}k\geq m,}

where

(k+r1k)=Γ(k+r)k!Γ(r)=(1)k(rk)(1){\displaystyle {k+r-1 \choose k}={\frac {\Gamma (k+r)}{k!\,\Gamma (r)}}=(-1)^{k}\,{-r \choose k}\qquad \qquad (1)}

is the (generalized)binomial coefficient andΓ denotes thegamma function.

Probability generating function

[edit]

Using thatf ( . ; m, r, ps) fors(0, 1] is also a probability mass function, it follows that theprobability generating function is given by

φ(s)=k=mf(k;m,r,p)sk=(1ps)rj=0m1(j+r1j)(ps)j(1p)rj=0m1(j+r1j)pjfor |s|1p.{\displaystyle {\begin{aligned}\varphi (s)&=\sum _{k=m}^{\infty }f(k;m,r,p)s^{k}\\&={\frac {(1-ps)^{-r}-\sum _{j=0}^{m-1}{\binom {j+r-1}{j}}(ps)^{j}}{(1-p)^{-r}-\sum _{j=0}^{m-1}{\binom {j+r-1}{j}}p^{j}}}\qquad {\text{for }}|s|\leq {\frac {1}{p}}.\end{aligned}}}

For the important casem = 1, hencer(–1, 0), this simplifies to

φ(s)=1(1ps)r1(1p)rfor |s|1p.{\displaystyle \varphi (s)={\frac {1-(1-ps)^{-r}}{1-(1-p)^{-r}}}\qquad {\text{for }}|s|\leq {\frac {1}{p}}.}

References

[edit]
  1. ^Jonhnson, N.L.; Kotz, S.;Kemp, A.W. (1993)Univariate Discrete Distributions, 2nd edition, WileyISBN 0-471-54897-9 (page 227)
  2. ^Shah S.M. (1971) "The displaced negative binomial distribution",Calcutta Statistical Association Bulletin, 20, 143–152
  3. ^Hess, Klaus Th.; Anett Liewald; Klaus D. Schmidt (2002)."An extension of Panjer's recursion"(PDF).ASTIN Bulletin.32 (2):283–297.doi:10.2143/AST.32.2.1030.MR 1942940.Zbl 1098.91540.
  4. ^Willmot, Gordon (1988)."Sundt and Jewell's family of discrete distributions"(PDF).ASTIN Bulletin.18 (1):17–29.doi:10.2143/AST.18.1.2014957.
  5. ^Gerber, Hans U. (1992). "From the generalized gamma to the generalized negative binomial distribution".Insurance: Mathematics and Economics.10 (4):303–309.doi:10.1016/0167-6687(92)90061-F.ISSN 0167-6687.MR 1172687.Zbl 0743.62014.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Extended_negative_binomial_distribution&oldid=1338580796"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp